Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
saltimbanca
Ciao Vorrei dimostrare che: "dato il polinomio $f in RR[x]$ di grado 1 o 2 con $Delta<0$ => irriducibile" Riprendendo la definizione di irriducibile data so che: f è irriducibile se 1) $f!=0$ 2) f non appartiene a $A[x]^(xx)$ 3) f ha solo divisori impropri Ricordo anche la definizione di divisore imporprio g con g|f: Dato l'anello A con unità e $f,g in A[x]$ diciamo g divisore improprio di f se $g in A[x]^(xx) or (g|f and f|g)$ ossia in altre parole ...

Studente Anonimo
Considerate 2021 carte, ciascuna delle quali da un lato è bianca e dall'altro è nera che stanno tutte parallele lungo un tavolo. Inizialmente tutte le carte mostrano il loro lato bianco. Ci sono due giocatori che giocano alternandosi le mosse. Ciascuna mossa consiste nel scegliere un blocco di 50 carte consecutive, di cui la prima (quella più a sinistra) mostra il lato bianco e girare tutte, in questo modo le carte che mostravano il lato bianco ora mostrano il lato nero e viceversa. L'ultimo ...
5
Studente Anonimo
15 nov 2021, 00:57

Gh3rra
Salve a tutti, dovrei risolvere quest'integrale doppio: $\intint_{D}y dxdy$ $D={(x,y)\in R: x^2-1\leq y\leq \sqrt{1-x^2}}$ Dopo aver disegnato il grafico e trovato i punti ho trovato le variazioni di x e y: $D={(x,y)\in R: -1\leq x \leq 1 ,x^2-1\leq y\leq \sqrt{1-x^2}}$ Quindi ho integrato verticalmente: $\int_{-1}^{1}dx\int_{x^2-1}^{\sqrt{1-x^2}}y dy=\int_{-1}^{1}dx\left[\frac{y^2}{2}\right]_{x^2-1}^{\sqrt{1-x^2}}=\int_{-1}^{1}\frac{1-x^2-(x^2-1)^2}{2}dx=\int_{-1}^{1}\frac{-x^4+x^2}{2}dx$ $=\frac{1}{2}\int_{-1}^{1}-x^4dx +\frac{1}{2}\int_{-1}^{1}x^2dx=\frac{1}{2}\left[\frac{-x^5}{5}\right]_{-1}^{1}+\frac{1}{2}\left[\frac{x^3}{3}\right]_{-1}^{1}=\frac{2}{15}$ È corretto come ho trovato il dominio e ho svolto il calcolo dell'integrale?
11
16 nov 2021, 16:13

_chiara_12345_
avrei bisogno di un riassunto di Galileo Galilei da un punto di vista filosofico
1
18 nov 2021, 18:27

silvia.brenchio
ciao, chiedo umilmente un aiuto per la parafrasi del sonetto Bieca, o Morte minacci? Dell'Alfieri. Qualcuno potrebbe aiutarmi ?
2
15 nov 2021, 10:29

Gh3rra
Salve a tutti, dovrei risolvere quest'integrale doppio: $\intint_{D}(1-2x-3y) dxdy$ $D={(x,y)\in R: (x-\frac{1}{2})^2+y^2\leq \frac{1}{4}}$ Il grafico: Integrando verticalmente ottengo un'integrale nullo. Ora mi è stato chiesto di calcolarlo usando le formule di Green Gauss quindi mi trasformo l'integrale: $\intint_{D}(1-2x-3y) dxdy=\int_{+D}(x-x^2-3xy)dy$ E parametrizzo la curva $\gamma_1$: $\gamma_1=((x=\frac{1}{2}\cos(t)+\frac{1}{2}),(y=\frac{1}{2}\sin(t)))$ Con: $0\leq t \leq 2\pi$ Quindi: $\int_0^{2\pi}\frac{1}{2}\cos(t)+\frac{1}{2}-\left(\frac{1}{2}\cos(t)+\frac{1}{2}\right)^2-\left(\frac{3}{2}\cos(t)+\frac{3}{2}\right)\frac{1}{2}\sin(t)dt=$ $=\int_0^{2\pi}\frac{1}{4}-\frac{1}{4}\sqrt{1-\sin^2(t)}+\frac{3}{4}\sqrt{1-\sin^2(t)}\sin(t)-\frac{3}{4}\sin(t)$ Integrando per sostituzione ottengo un'intervallo nullo, ...
4
17 nov 2021, 16:11

leader2.0
Raga ho bisogno di aiuto con un problema, grazie per chi mi aiuta. In un rettangolo la somma delle dimensioni e lunga 28 cm. Calcola la misura dei lati di un trapezio rettangolo con lo stesso perimetro del rettangolo, sapendo che la base minore e congruente al lato obliquo, il lato obliquo supera di 1 cm l'altezza mentre la base maggiore misura 8 cm meno del doppio del lato obliquo.
1
18 nov 2021, 15:01

ANDRIESCU
1)perche il narratore indulge all'inizio su particolari descrittivi paesaggistici? a che punto della narrazione viene presentato la figura di mazzarrò? quali aspetti ne sono evidenziati? Aggiunto 1 minuto più tardi: 2)Mazzarrò e diventato ricco, ma il suo stile di vita non e cambiato, perche?
4
17 nov 2021, 16:56

_chiara_12345_
quali sono i concetti fondamentali di Catullo?
0
18 nov 2021, 16:26

Vittorio62
Salve. La mia prof di pedagogia ci ha invitato a ricercare "le diverse concezioni di "natura" in Rousseau" ma su internet non ho trovato granché. Qualcuno che ne sappia mi dica, per favore.
1
9 nov 2021, 17:09

Galileo1729
Buongiorno, Non riesco a risolvere il seguente esercizio: Si considerino le seguenti funzioni: \[ f(x):=\int_1^x (\dfrac{\pi}{2}-\text{arctan } t) \text{ tanh}(t) \text{ sin}(t) dt\] \[ g(x):=\int_1^x (\dfrac{\pi}{2}-\text{arctan } t) \text{ tanh}(t) \text{ |sin}(t)| dt\] a. Dimostrare che il limite di $f(x)$ per $x \rightarrow \infty$ esiste ed è finito. b. Determinare il limite di $g(x)$ per $x \rightarrow \infty$ Riguardo al punto a, ho utilizzato il criterio di convergenza ...

satellitea30
Vi elenco due problemi sul calcolo combinatorio , non avendo le soluzioni vorrei sapere se il procedimento è giusto: In una serra si hanno a disposizione 120 tipi di fiori ma se ne possono prendere solo 4 alla volta. Fra quanti possibili lotti di 4 il cliente può scegliere? io ho indicato con n=numero dei fiori e con K=i lotti da 4 poi ho usato la formula delle combinazioni senza ripetizione $(120!)/(4!(116!))=8214570$ combinazioni. il secondo problema: una lampada è formata da 8 led , ogni led può ...

francicko
Non riesco a capire il seguente teorema, potreste darmi un piccolo aiuto? Siano $F$ ed $F'$ due campi isomorfi con rispettivamente $E$ ed $E'$ campi di spezzamento dei polinomi $f$ $in$ $F[x]$, ed $f'$ $in$ $F'[x]$ Supponiamo che ogni fattore irriducibile di $f$ abbia radici distinte in $E$.Allora il numero di isomorfismi ...

zimmerusky
Determinare il più piccolo numero $n$ di 3 cifre tale che la quantità: $((n),(14))\cdot((n),(15))\cdot((n),(16))\cdot((n),(17))$ sia un quadrato perfetto.
10
13 nov 2021, 11:23

satellitea30
Buongiorno vi riporto di seguito questo problema sul calcolo combinatorio : Un’urna contiene 10 palline: tre bianche, numerate da 1 a 3 e sette nere, numerate da 4 a 10.Si estraggono successivamente senza reimmissione 4 palline. In quanti modi diversi è possibile estrarre: a.4 palline nere; b.3 palline nere e 1 bianca, in quest’ordine; c.3 palline nere e 1 bianca, in ordine qualsiasi; d.2 palline bianche e 2 palline nere, in ordine qualsiasi; e.almeno 3 palline nere; f.al massimo 3 ...

SteezyMenchi
Salve ho bisogno di aiuto con questo vero e falso (le mie risposte sono 1V, 2V, 3F, 4V) Sia ${an}_n$ una successione e sia $S_n$ l'elemento ennesimo della corrispondente successione delle somme parziali: (Nota le sommatorie seguenti vanno tutte da $k=1$ a infinito) 1-)Se $\sum_{k=1}a_k$ converge se e solo se $S_(n+1)-S_n$ tende a 0 per n che tende a infinito 2-)se $S_n$ è limitata superiormente, allora $\sum_{k=1}a_k$ converge ...

Magma1
Ho trovato questa identità $\nabla (\mathbf{x}^T\mathbf{Ax})=2\mathbf{Ax}$ mentre studiavo e ho provato a buttare giù una dimostrazione: $$ \nabla (\mathbf{x}^T.\mathbf{Ax} ) =\nabla\mathbf{x}^T.\mathbf{Ax} +\mathbf{x}^T.\mathbf{A}\nabla \mathbf{x} =\mathbf{Ax}+(\mathbf{x}^T\mathbf{A} )^T= (\mathbf{A}+\mathbf{A}^T )\mathbf{x}=2\mathbf{Ax}$$ con $\mathbf{x}={x_1,..., x_n}^T$ e $\mathbf{A}$ matrice simmetrica di ordine $n$. Potrebbe andare oppure è piuttosto rozza?
11
13 nov 2021, 22:36

Utente18.
Potete farmu queste frasi per vedere se ho fatto giuste queste frasi con analisi del periodo?: 1.Il nonno non e giovanissimo,eppure conduce una vita molto attiva 2.Oggi non solo devo studiare,ma ho anche un sacco di compiti scritti 3.Se non riusciremo a prendere il prossimo treno,o rinviamo la partenza a domani, o addirittura vi rinunciamo del tutto. 4.Al nenonato e stato il nome di Ettore,infatti cosi si chiamava l'amato bisnonno. 5.Occore saper riconoscere gli errori,altrimenti ci sara ...
1
17 nov 2021, 19:39

Utente18.
Potete farmu queste frasi per vedere se ho fatto giuste queste frasi con analisi del periodo?: 1.Il nonno non e giovanissimo,eppure conduce una vita molto attiva 2.Oggi non solo devo studiare,ma ho anche un sacco di compiti scritti 3.Se non riusciremo a prendere il prossimo treno,o rinviamo la partenza a domani, o addirittura vi rinunciamo del tutto. 4.Al nenonato e stato il nome di Ettore,infatti cosi si chiamava l'amato bisnonno. 5.Occore saper riconoscere gli errori,altrimenti ci sara ...
1
17 nov 2021, 19:39

Utente18.
Mi aiutate con queste analisi del periodo?: 1.Il nonno non é piú giovanissimo,epoure conduce una vita molto attiva 2.Oggi non solo devo studiare,ma ho anche un sacco di compiti scritti 3.Se non riusciremo a prendere il prossimo treno,o rinviamo la partenza a domani, o addirittura vi rinunciamo del tutto. 4.Al nenonato é stato il nome di Ettore,infatti cosí si chiamava l'amato bisnonno. 5.Occore saper riconoscere gli errori,altrimenti ci sarà il rischio di ripeterli. 6.Credo che le auto ...
3
17 nov 2021, 15:38