Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Secondo me ci sono dei typo nelle definizioni seguenti che mi hanno dato
Sia \(f: U \to \mathbb{C} \) una funzione olomorfa con sviluppo in serie di Laurent in \(z_0 \)
\[ f(z) = \sum\limits_{n=0}^{\infty} a_n(z-z_0)^n \]
chiamiamo "valutazione" (non so il termine in italiano, l'ho tradotto alla lettera) di \(f \) e lo notiamo \(v_{z_0}(f) \in \mathbb{N} \cup \{ \pm \infty \} \) la quantità \( \inf \{ n \in \mathbb{Z} : a_n\neq 0 \} \)
Sia \(f: U \to \mathbb{C} \) una funzione olomorfa con ...
Una funzione meromorfa per definizione è una funzione olomorfa \( f : U \setminus K \to \mathbb{C} \) dove \( K \) è un insieme di punti isolati in cui la funzione possiede delle singolarita eliminabili e/o dei poli.
Pertanto se \( U \) è compatto abbiamo forzatamente che \( K \) è finito.
Questo vuol dire che la funzione \( f: \mathbb{D}\setminus K \to \mathbb{C} \) dove \( K = \{ 1/n : n \in \mathbb{N}^* \} \cup \{ 0 \} \) definita come \( z \mapsto 1/\sin(\pi/z) \) non è ...
Probabilmente sarà una scemata che mi sfugge.
Dimostra che se \( a_n \in \mathbb{C} \) e
\[ \sum_{n=2}^{\infty} n \left| a_n \right|
Dimostra che se \( \phi : \mathbb{H} \to \mathbb{H} \) è una mappa conforme che fissa tre punti distinti, dove \( \mathbb{H} = \{ z \in \mathbb{C} : \Im z > 0 \} \), allora \( \phi = id \).
Vi sembra funzionare?
Edit: Faccio la domanda perché mi sembra troppo facile e mi sembra strano quindi magari mi sfugge qualche sottigliezza. Ma se funziona allora è molto bello perché con una formulazione leggermente diversa potrebbe essere un esercizio che anche un liceale può tranquillamente ...
Buongiorno ho due problemi che non riesco a risolvere:
1)Si dimostri che se $\langle, \rangle$ e’ un prodotto scalare in $R^n$ non degenere, NON definito positivo e NON definito negativo, esiste un vettore non nullo u ∈ $R^n$ tale che $\langle u, u \rangle$ = 0
2)Sia V uno spazio vettoriale finito dimensionale. Si dia
un isomorfismo tra V* ⊗ V* e lo spazio vettoriale delle forme bilineari su V SENZA fissare una base.
Per 1) avevo pensato di sfruttare il non degenere, ma non ...
L'esercizio d'esame mi dava:
$R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(2,3),(3,2),(1,4),(4,1),(1,7),(7,1),(4,7),(7,4)\}$
e mi chiedeva di dimostrare che $R$ è una relazione di equivalenza su $[7]$ e di calcolare $[7] \/R$.
Non sono riuscita a trovare nessun esempio simile e non so da dove iniziare.
Grazie per l'aiuto.
Buonasera, qual è quel numero $z\in C$ tale che $cos(z) = 2$?
Buonasera a tutti, vi scrivo perché sono alquanto disperata per quanto riguarda la dimostrazione della seconda cardinale per un sistema di punti materiale ed il primo teorema di Koenig.
Koenig
Il primo teorema di Koenig dice che (leggo dal mio libro) il momento angolare di un corpo rigido rispetto ad un centro di riduzione $O$ è uguale a :
$vecK_O= vecr_g xx mvecv_g + tilde(vecK_g)$
Domande su Koenig:
mi confermate che, per i corpi rigidi che ruotano attorno ad un asse principale d'inerzia fisso ...
Mi serve un aiuto con il seguente problema di massimizzazione:
\begin{equation}
max \ 2x_1\\
s.t. \ 5x_2 \leq 2 \\
x_1 + 3x_2 \geq 3 \\
x_1, x_2 \geq 0
\end{equation}
devo determinare le soluzioni di base e, per ognuna di esse, determinare se sia ammissibile o meno.
Ho portato il problema di PL in forma standard introducendo una variabile di slack e una variabile di surplus.
\begin{equation}
min \ -2x_1\\
s.t. \ 5x_2+x_3 = 2 \\
x_1 + 3x_2-x_4 = 3 \\
x_1, x_2, x_3, x_4 \geq ...
Salve, ho questo esercizio:
La variabile aleatoria $ X $ ha densità pari ad $ 1/4 $ in $ [-1,0] $ a $ 3/4 $ in $ [0,1] $.
Calcolare media, varianza e funzione caratteristica.
Come si calcola la funzione caratteristica? (Allego definizione)
La funzione di densità dovrebbe essere:
$f(x)={(1/4 , per -1<x<0),(3/4, per 0<x<1):}$
e adesso?
Inoltre media e varianza le ho già calcolate ma le posso calcolare anche a partire dalla funzione caratteristica?
Ciao a tutti.
Ho provato a svolgere in diversi modi questa:
\[
f(x) = \frac{x}{2}\ \log \left(\frac{1+x^2}{4}\right) +\arctan x - x\; ,
\]
ma non sono riuscito a risolverla.
Ho provato:
- Primo approccio: ho cercato di studiarla normalmente, senza risultati ovviamente;
- Secondo approccio: ho cercato di risolverla con il metodo di newton o il metodo delle tangenti, ma non ho ben capito come si utilizza;
- Terzo approccio: ho provato ad usare teorema di esistenza degli zeri, ma il procedimento ...
Salve a tutti, ho un problema nel capire come determinare il dominio di \(\displaystyle y \) dopo aver determinato la soluzione di un problema di Cauchy. Vi mostro le mie perplessità in due esempi:
1.
\(\displaystyle \begin{cases} y' = \sqrt{y} \\ y(0)=1 \end{cases} \)
dopo aver trovato che la soluzione dell'equazione differenziale è \(\displaystyle y(x)= \left(\frac{1}{2} x +c \right) ^2 \) si ottiene \(\displaystyle c=1 \). Primo dubbio: perchè non \(\displaystyle c=\pm 1 \)?
Viene trovato ...
Sia $X$ uno spazio topologico connesso, localmente connesso, localmente compatto e $T_2$. Dimostrare che per ogni due punti che si possono prendere in $X$, esiste un sottoinsieme $K$ di $X$ connesso e compatto che li contiene.
Rieccoci con degli esercizi di topologia!
Dimostrare che se $RR$ è omeomorfo a $X\timesY$ con $X,Y$ spazi topologici, allora uno tra $X$ e $Y$ ha un solo punto.
Dimostrare la stessa cosa con $S^1$ al posto di $RR$.
Buongiorno, sono uno studente del primo anno e l'esame di matematica é alle porte.
Questo limite che ho trovato sull'eserciziario mi sta creando un po' di problemi
$lim_(x->0)(x*(1+(ln|x|)^2)$
Potreste consigliarmi sul come procedere, visto che non riesco a uscire dalla forma indeterminata?
Grazie
Ciao a tutti!
Ho un dubbio che riguarda la teoria di diversi esercizi sulla dinamica del corpo rigido.
Supponiamo di avere un disco o un anello che si muove di rotolamento puro e che, ad un certo punto, andrà a urtare un corpo oppure una molla.
Cosa succederà alla dinamica del mio disco/anello?
Prendiamo come esempio tre casi, nei quali, dall'istante iniziale, il corpo si muove di rotolamento puro
$a)$ disco che si trova su piano inclinato e va ad "impattare" su una molla posta ...
Avrei una domanda: un filo percorso da corrente genera un campo magnetico. Questo è il risultato dell'esperimento di Oersted ma come si giustifica fisicamente. Con ciò intendo dire: come è possibili dedurre questo risultato a partire da altri ben noti? Lo stesso vale per l'induzione elettrica e magnetica. Come è possibile che un filo percorso da corrente sia in grado di indurre gli elettroni di un altro ciruito a mettersi in movimento?
Ciao a tutti, vi scrivo perché non capisco dove sbaglio in questo esercizio.
Io ho imposto che l'energia meccanica alla base della guida circolare sia puramente cinetica, e ho chiamato la velocità che ha il punto materiale quando si trova alla base della guida circolare come $tilde(v)$.
Dopodiché, ho imposto che l'energia meccanica quando il punto materiale si trova alla base della guida circolare, sia maggiore dell'energia potenziale di quando il punto materiale ...
Determinare tutti i numeri $N$ di tre cifre che siano divisibili per $11$ e tali che $N/11$ sia pari alla somma dei quadrati delle cifre di $N$.
Cordialmente, Alex