Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Salve!!! ho provato a fare questa dimostrazione di geometria ma non riesco.. potete aiutarmi per favore??
E dato un triangolo ABC rettangolo in A in cui sia AB < AC e AH sia l'altezza relativa all'ipotenusa BC. Sul segmento BC si prenda un altro segmento HD = HB e dal punto C si traccia il segmento CE perpendicolare ad AD. Dimostrare che la circonferenza di diametro AC passa per H ed E, quindi dedurre la congruenza delle corde AH e HE.
Aiuto!! Grazie in anticipo=)
Allora sono abbastanza confuso su questo argomento, nel calcolo di continuità e derivabilità bisogna fare prima il limite e poi la derivata della funzione? e poi mettere tutto insieme?
Per esempio in questa funzione:
f(x)= $ { (ax+b) / (x^{2} +1) x < 0<br />
<br />
f(x)= $ { 2log(x+1) -1 x geq 0 } $ <br />
<br />
quindi facendo il limite tendente a 0 della prima dovrebbe uscire b, mentre facendo il limite della seconda possibile che rimane solo 2 log?<br />
<br />
per quanto riguarda la derivata sono a punto e a capo...bisogna fare cosi nella prima?<br />
<br />
$ D (ab) / (x^2+1) $
e nella seconda con il logaritmo come diventa?e poi come si procede?
Salve!!! ho provato a fare questa dimostrazione di geometria ma non riesco.. potete aiutarmi per favore??
E dato un triangolo ABC rettangolo in A in cui sia AB < AC e AH sia l'altezza relativa all'ipotenusa BC. Sul segmento BC si prenda un altro segmento HD = HB e dal punto C si traccia il segmento CE perpendicolare ad AD. Dimostrare che la circonferenza di diametro AC passa per H ed E, quindi dedurre la congruenza delle corde AH e HE.
Aiuto!! Grazie in anticipo=)
Sia dato l'infinitesimo per x tendente a 0
$f(x)=(log(1+2x^3)-e^{<2x^3>}+1)/(1-cos(3x)-sin(9/2x^2))$
discutere al variare di a > 0 $lim_(<x> -> <0+>) f(x)/x^a$
applico Taylor
$log(1+2x^3)=2x^3$
$e^{<2x^3>}=2x^3 + 1$
$cos(3x)=1-9/2x^2+27/8x^4$
$sin(9/2x^2))=9/2x^2$
$lim_(<x> -> <0+>)0/(-27/8x^(4+a))=0$
è giusto?
dopo devo calcolare l'ordine di infinitesimo di $f(x) + x^3/(x^2+1)$ ma non credo di essere capace
mi potete aiutare?
grazie
Ciao
Dovrei risolvere questa proporzione:
S : x= S2 : (x+A)
E il termine che mi interessa conoscere è X.
Mi potreste dare una mano?
grazie mille
mi potreste aiutare a fare qst dimostrazione
sia abc un triangolo rettangolo isoscele.dal vertice a dell'angolo retto si conduca una retta che non intersechi ulteriormente il triangolo.siano b' e c' le proiezioni rispettivamente di b e c su tale retta dimostrare ke i triangoli abb' e acc' sono congruenti
vi prego urgente
Sto risolvendo questa equazione
53669x-3485y=16031
è risolubile in Z in quanto MCD(53669,3485)|16031
però ho un problema per l'identità di bezout
53669=3485*15+1394 ---> 1394=53669-3485*15
3485=1394*2+697 ----> 697=3485-1394*2
1394=697*2+0
Quindi la seguente uguaglianza non risulta
697=3485-1394*2
=3485-(53669-3485*15)*2
=3485-53669*2-3485*2*15*2
se proseguo non risulta = 697.. dove sbaglio?
Salve a tutti, ecco il mio esercizio:
Calcolare l'integrale $int_D z dV$ con $D$ definito da:
$z^2-y^2-x^2>=1$ e $0<=z<=2$ dalle quali ricavo che $sqrt(1+x^2+y^2)<=z<=2$.
A questo punto imposto il mio integrale triplo:
$int dxdy int_{sqrt(1+x^2+y^2)}^2 dz$
facendo i calcoli nell'integrale più interno risulta:$1/2 int 3-x^2-y^2 dxdy$.
Poi sostituisco con le coordinate polari.
A questo punto il piccolo problema:
al prof viene $\pi int_0^sqrt(3) (3r-r^3) dr$ .L'unica cosa che non capisco è ...
Ciao a tutti, ho un esercizio da proporvi, in realtà sarebbe di Dati e Algoritmi, ma ciò che non capisco è proprio la parte algebrica..
Ho la relazione di ricorrenza: $T(n) = T(n - d) - d + n^2$ con $d$ costante e maggiore di 1.
Ora, la relazione chiama sè stessa fino a quando $T(n - d)$ non diventa $T(1)$.
Inizialmente si ha: $T(n) = T(n - d) - d + n^2$
Comincia la ricorsione:$T(n − 2d) + d + (n − d)^2 + d + n^2$
Altro passo ricorsivo: $T(n − 3d) + d + (n − 2d)^2 + d + (n − d)^2 + d + n^2$
E fin qui tutto ok..
Ciò che ...
Sto studiando le cardinalità di insiemi infiniti, e ho un forte dubbio.
Perchè il processo diagonale di Cantor funziona su $RR$ e non su$QQ$?
riporto quella che io considero una dimostrazione del fatto che $RR$ non è numerabile, così magari capite se sbaglio.
Dimostrazione:
consideriamo $A=(0,1)$ intervallo in $RR$ e dimostriamo che non è numerabile.
se $A$ fosse numerabile allora potremmo scrivere i suoi elementi ...
Un amico mi ha dettato questa probabile traccia d'esame e non ho la più pallida idea di come si svolgano queste tipologie di esercizio.
In realtà sono 5 gli esercizi probabili e ne posto 3 perchè gli altri e due li so già svolgere... spero di non chiedere troppo anche perchè sono disperata!
1.
Sia X, ..., Xn un campione proveniente dalla distribuzione P(alfa). Determinare lo srimatore di massima verosomiglianza e verificare se questo stimatore sia corretto.
2.
Costruire un esempio in ...
Salve a tutti.
Ho trovato alcune difficoltà nel reperire un valido metodo di ricerca per le cifre decimali di un numero.
Ho trovato, ad esempio, che per stimare il resto dovrei considerare la formula:
$R_n(x) <= M_(n+1) (x^(n+1))/((n+1)!)$
dove $M_(n+1)$ è il massimo valore raggiunto da una funzione.
Il testo fa l'esempio con $sen(1/10)$ che ha per massimo in valore assoluto $1$.
Quindi, con $0<=x<=1/10$:
$R_n(x) <= M_(n+1) (x^(n+1))/((n+1)!)<=1*1/(10^(n+1))*(1/((n+1)!))$
per $n+1=5$ si ...
Salve a tutti,ho da poco cominciato lo studio di integrali doppi e tripli ecco un esercizio del quale non son sicuro della sua risoluzione.
Vi ringrazio anticipatamente per il vostro aiuto, ecco l'esercizio:
Calcolare l'area della porzione di piano $x+y=z$ contenuta nell'insieme $z>=x^2+y^2$.
Io procedo così:
ricavo che $x^2+y^2<=x+y$ e di conseguenza avrò questo integrale:
$int dxdy int_{x^2+y^2}^{x+y}dz$ che corrispone a $int x+y-x^2-y^2 dxdy$
a questo punto trasformo la ...
Salute. Mi servirebbe una dimostrazione del seguente teorema:
Teorema di Compattezza: Una funzione continua manda compatti in compatti.
Ovvero se $f$ è una funzione continua e se $A$ è un insieme compatto, $f(A)$ è un insieme compatto. Da questo teorema si ottiene quello di Weierstrass come un corollario, atteso il fatto che ogni insieme compatto ammette massimo e minimo.
La dimostrazione che fa il mio libro non è facile, è molto astratta; ...
Ciao a tutti. E' la prima volta che scrivo.
Devo risolvere questi due problemi di geometria analitica; potete darmi una mano?
TESTO del 1°: Data la circonferenza x alla seconda + y alla seconda - 2x+y-1=0, verificare che il punto P(1;-2) sta sulla circonferenza e scrivere l'equazione della tangente alla circonferenza nel punto P.
Il risultato è "y=-2"
TESTO del 2°: Scrivere l'equazione della circonferenza che taglia l'asse y nei punti di ordinata 4 e -2 e che passa per ...
Ciao a tutti.
Devo fare lo sviluppo di mc-laurin arrestato al terzo ordine di $ g(x) $:
Data $ f(x)=4+2x-x^2 $
$ g(x)=e^f(x)-2sin(e^4*x)-e^4 $
a me viene uno polinomio con un termine noto alche io capisco che è sbagliato perchè dovrebbe almeno valere come g(x) in zero cioè zero.
io lo posto magari sapete dirmi dove sbaglio: $ 13-e^4+(10-2*e^4)*x-3*x^2+(e^12/3-2)*x^3 $
Per favore aiutatemi a fare questo problema di fisica che proprio nn riesco a farlo il titolo è:
Un corpo di 100grammi cade da 10metri su una molla che ha la costante di elasticità di 1000newton\metri.
Calcola la velocità con la quale arriva sulla mollae di quanto si comprime la molla???
Per favore urgente!!!! Grazie
Qualcuno mi sa dire la funzione f=fA che cos'è? L'ho trovato in alcuni esercizi e non ho ben capito cosa sia...
Questo è l'esercizio che devo svolgere...
4) Sia f=fA la funzione lineare di R3 in se stesso definita dalla matrice A:
3 -1 -1
1 1 -1
1 -1 1
Ho già calcolato autovalori, autovettori e controllato se è diagonalizzabile...
ora mi resta "Scrivere un sistema di riferimento R' di autovettori di f e determinare la matrice M(f, R') associata ad f nel sistema di riferimento ...
Salve a tutti, vorrei concentrare l'attenzione sui seguenti integrali impropri:
1) $int_(0)^(1) 1/(|lnx|^a)dx$ con $ainRR$
2)$int_(2)^(+oo) 1/(x^a(lnx)^b)dx$ con $a,binRR$
3)$int_(0)^(+oo) x^n e^(-cx)dx$ con $ninZZ, cinRR$
4)$int_(0)^(+oo) sinx/xdx$
La mia difficoltà non è tanto nel discutere la convergenza degli integrali, ma sta proprio nel calcolarli.
P.S. Per quanto riguarda l'ultimo integrale si tenga presente che sto seguendo Analisi I. ...
compiti du monomi...volgere...non riesco capire xk viene il risultato...aiutatemi...
2a(-3ab)+(-a^2)(-b)+6a^2b=
2/3x(-3xy)(-y^2)+4xy^2(xy)+(-3y^3)(-2x^2)=
(-2x^3y)(-y^2)+(-1/3x^2y^2)(+3xy)=