Problema funzione integrale

pizzi
buonasera a tutti! ho un problema..dice:
per $a in RR$ sia definita $ int_(-oo)^(a) (x+a)^2 e^x dx $
calcolare $g(a)$ e il minimo di $g(a)$.

bene
idea...integro per parti...ottengo $g(a)=4a^2 e^a-4a e^a+2e^a$ che non credo sia giusto...perchè poi per la derivata ho pensato:
$ int_(-oo)^(a) = int_(-oo)^(0) +int_(0)^(a) $
quindi $ g'(a) = int_(0)^(a) g'(x) != D(g(a)) $ visto che $D( int_(-oo)^(0))=0$ perché costante (giusto??)
quindi dov'è l'errore?? dovevo spezzare l'integrale prima?? o forse non si può spezzare in questo modo??
o semplicemente ho sbagliato a integrare...(probabile perché io dopo una certa ora vado a scatti!)

Risposte
stefano_89
è sbagliata l' integrazione per parti, è: $4a^2e^a - 4ae^a + 2e^a$

pizzi
giusto! mi son dimenticato un 2...però non viene lo stesso uguale alla derivata..

___
ora la modifico nell'altro post..

stefano_89
Comunque non sono troppo sicuro di come hai spezzato l' integrale, le cose cambiano a seconda che $a$ sia maggiore o minore di zero.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.