Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Darèios89
Vorrei dimostrare il binomio di Newton mediante principio di induzione, cioè la formula: [tex](a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k=\binom{n}{0}a^{n}+\binom{n}{1}a^{n-1}b+.....+\binom{n}{n}b[/tex] Per n=1 verifico facilmente che sia verificata, ma come faccio a dimostrarla per [tex]n+1[/tex]? Facendo le sostituzioni non arrivo ad una conclusione...mi aiutereste?
7
13 mag 2011, 21:39

snisna
C'è un'opzione in più nelle risposte... l'ultima (lunedì 15 febbraio).... Che tra l'altro potrebbe anche essere esatta... :p
9
13 mag 2011, 16:45

Peppo_95
Salve, purtroppo nè io, nè i miei compagni, nè il mio professore siamo riusciti a trovare la soluzione a questo problema di geometria: Data una semicirconferenza di diametro $ AB = 2r $ , determina la misura del raggio $ x $ di una circonferenza tangente in $ D $ al diametro AB e in $ E $ alla semicirconferenza in modo che, detto $ C $ il suo centro, si abbia $ AD + DC + CE = 5/4r $. I nostri tentativi sono stati principalmente sul ...
5
13 mag 2011, 16:18

poncelet
Devo determinare la classe limite di alcune successioni. Per esempio: $nsin(n\pi/2)$ Siccome $sin(n\pi/2)$ oscilla tra $-1, 0, 1$ avrei che la classe limite è data da ${2k "se k>=0", 2k-1 "se k<0"}$ e di conseguenza $"limsup"nsin(n\pi/2)=+oo$ e $"liminf"nsin(n\pi/2)=-oo$ L'altra successione è $sqrt(n)-[sqrt(n)]$ In questo caso ad intuito ho che vale $0<sqrt(n)-[sqrt(n)]<=1$ e quindi $"liminf"sqrt(n)-[sqrt(n)]=0$ e $"limsup"sqrt(n)-[sqrt(n)]=1$ ma non so come esprimere la classe limite. Sono giusti i ragionamenti?
5
13 mag 2011, 18:42

gygabyte017
Ciao a tutti, ho questa equazione: $a_1^2 + a_2^2 + a_3^2 + a_4^2 = q^2 + 1$, dove $q >= 3$ è un numero dispari, e $a_i >= 1$, $a_i in NN$ . So già che $a_1 = a_2 = 1/2 (q + 1)$ e $a_3 = a_4 = 1/2 (q-1)$ risolvono l'equazione, e devo mostrare che (ovviamente a meno dell'ordine) questa è l'unica soluzione. Mi sapreste dire che tecniche utilizzare per fare vedere questa cosa? Grazie

cyd1
ciao, ho un problema con un esercizio: http://imageshack.us/photo/my-images/836/catturajx.png/ il risultato dovrebbe essere $alpha = -3/2 (i n s t a b i l e)$ non volendo procedere per via lagrangiana ho pensato di poterlo risolvere o tramite le equazioni cardinali o tramite il principio dei lavori virtuali (l'equazione simbolica della statica). tanto dev'essere equivalente. con le equazioni cardinali ho fatto il seguente ragionamento: 1) sul disco agisce un momento tale da far ruotare il disco in modo che rotoli verso destra. il ...

fk16
Un treno impiega 15 s per percorrere, rallentando uniformemente, una curva di raggio r=150m. La sua velocità iniziale è di 90 km/h e quella finale di 50 Km/h. Calcolare l'accelerazione del treno quando ha la velocità di 50 km/h. Calcolare lo spazio percorso del treno prima di frmarsi nell'ipotesi che dopo la curva il treno continui a rallentare unifomremente.. Ragazzi io non capisco un cosa ma visto che il moto è uniformrmente decellerato l'accelerazione...l'accelerazione non è sempre la ...

gugo82
Ho un dubbio che mi ronza in testa da stamattina... Se ho delle funzioni [tex]$F,G,f$[/tex] abbastanza buone tali che: [tex]$\begin{cases} f(x)\to 0,\ G(x)\approx |x-x_0|^b &\text{, per $x\to x_0$} \\ F(y)\approx y^a &\text{, per $y\to 0$}\end{cases}$[/tex] e so che [tex]$F(f(x))=G(x)$[/tex], posso concludere che [tex]$f(x)\approx |x-x_0|^{b/a}$[/tex] per [tex]$x\to x_0$[/tex]? Oppure, nell'ipotesi più debole: [tex]$\begin{cases} f(x)\to 0,\ G(x)\approx |x-x_0|^b &\text{, per $x\to x_0$} \\ F(y)=\text{O}(y^a) &\text{, per $y\to 0$}\end{cases}$[/tex] si può concludere che ...
1
3 mag 2011, 17:26

Antomus1
Ho un dubbio che mi assilla da un bel po,so che forse è una domanda facile.... ma perchè se i resistori sono collegati in parallelo la differenza di potenziale è la stessa ai capi di ciascun resistore?

previ91
Salve , ho questo dubbio : Ho un circuito RC , c'è il mio generatore poi ho la resistenza e il mio condensatore , R e C sono in parallelo . Il prolema chiede di calcolare la potenza dissipata in R allora io ho ragionato cosi : $P=Ieff^2*R$ Mi calcolo I max : (z = impedenza) $I max = (Vo)/z = (Vo)/sqrt(R^2+1/(wc)^2)$ Credo che i problemi nascano qui , io non so come comportarmi se RC sono in parallelo...cambia qualcosa nell'impedenza? L'eserczio comunque procedeva trovando Ieff dalla formula ...

Newton_1372
Sono due anni che non mi fa dormire la notte...penso che ora possa avere le armi giuste (col vostro aiuto!) http://imageshack.us/photo/my-images/42 ... sica1.png/ L'energia liberata dal cannoncino è E e viene usato per muovere sia la pallina che il cannoncino! Pensavo di servirmi di tre equazioni (1) $0 = (M+m)V_c+m' v'$ Conservazione della quantità di moto del sistema (M+m+m'). (2) $1/2 I \omega^2 + 1/2 (M+m) V_c^2 + 1/2 m'v'^2 = E$ Conservazione dell'energia totale (l'energia totale iniziale era semplicemente E, immagazzinata dentro il cannoncino prima ...

alex170
ciao a tutti!!!! ho un esercizio che mi chiede: Rappresentare con equazioni cartesiane le rette contenute nel piano $a$ di equazione $x+y+2z+1=0$ e passante per il punto $P(2,-1,-1)$ di $a$ ho pensato di fare la stella di rette per P ma poi non ho idea di come continuare poichè per utilizzare l'appartenenza al piano dovrei avere il determinante della matrice dei coefficienti uguale a 0, ma mi viene una matrice 3x2 e non so che farci. mi potete ...
15
29 apr 2011, 15:54

menale1
Ragazzi , avrei da realizzare un programmino in C tale che , dato un intero "n" di partenza ed un intero "x" , definisca quante volte la cifra x si ripeta nell'"n" di partenza .Io ho optato per #include #include int main (void) { int n , x , totale ; scanf("%d",&n); scanf("%d",&x); totale=0; for(n=n;n!=0;n=n/10){ if(n%10==x){ totale++; } ...
4
10 mag 2011, 20:29

CptFrank
Ciao a tutti. Sono nuovo del forum quindi, se sbaglio qualcosa, mi...corrigerete (scusate la citazione).8) Sto preparando l'esame su Teoria dei Segnali e ho un po' di difficolta' sullo studio dei segnali per quanto riguarda la loro rappresentazione grafica e le operazioni tra loro, quali somma,prodotto ecc.,che si applicano su di essi. Mi sapreste indicare qualche testo o sito, in cui sono spiegati in maniera esauriente e completa questi argomenti?Praticamente:come si fanno? Ho ...
4
3 mag 2011, 11:06

folgore1
Salve a tutti!Vorrei un aiuto su questa antitrasformata Zeta: $Z^(-1)[(j*z)/(z-j)^2]$. L'ho calcolata servendomi della tabella presente a pagina 6 di questa dispensa e viene: $Z^(-1)[(j*z)/(z-j)^2]=n*j^(n)$. Così per avere una conferma sulla correttezza del calcolo l'ho calcolata anche in MATLAB che mi ha resituito: >> iztrans((j*z)/(z-j)^2) ans = (-1)^(1/2*n)*n risultato che non coincide con quello calcolato da me Vi ringrazio in anticipo!
2
12 mag 2011, 21:04

_prime_number
Leggendo il libro An Introduction to Complex Analysis in Several Variables di Hörmander, nella dimostrazione che $\Omega$ pseudoconvesso implica $\Omega$ dominio di olomorfia (thm 4.2.9 per chi avesse la fonte diretta) l'autore svolge un passaggio che non riesco a spiegarmi per bene. Sia $\Omega\subset\mathbb{C}^n$ aperto pseudoconvesso. La dimostrazione procede per induzione su $n$ (il caso base è banale). Hörmander vuole dimostrare che preso un qualunque sottoinsieme ...

Alexander-Alessandro
Moto accelerato (65144) Miglior risposta
ho questi dati: V=1080 km/h A=5 m/s (alla seconda) *m/s(alla seconda) t=4 s devi trovare S finale di A e di B in più un (qualcosa) viaggia a 1080 km/h nei primi 4 secondi accellera di 5 m/s (alla seconda) poi viaggia di moto rettilineo uniforme per altri 6 secondi quanto spazio percorre? grazie in anticipo
1
13 mag 2011, 21:29

shintek201
Salve,avrei un dubbio su una questione trigonometrica: 1)Ma è possibile che il lato di un triangolo viene negativo?Oggi facendo un problema veniva negativo...Puo' essere? 2)Le altezze in un triangolo sono sempre perpendicolari al lato opposto?
18
13 mag 2011, 15:14

skyluke89
Ciao a tutti, sto studiando la teoria delle bande per il moto degli elettroni nei solidi (potenziale di Kronig-Penney, teorema di Bloch, etc..). La parte che mi è meno chiara è quella relativa alle zone di Brillouin; cioè, io disegno il grafico dell'energia in funzione del momento E(k), per una particella libera essa sarà giustamente una parabola; ma quando introduco un potenziale periodico, sui 'bordi' del reticolo periodico avvengono dei 'ripiegamenti' della funzione dell'energia, ma non ...

Renko
Problema nell’equazione: 1/3 (x-2)(x+2)=1/2(x-3)(x+3) Sono riuscito a scomporlo fino a diventare (2x-4)^2=(3x-9)^2 Ma non so più come procedere mi dareste un suggerimento Ho riscontrato lo stesso problema in un altro esercizio: (x+1)/(3x^2-6x) – (x-1)/(2x^3-4x^2) = (4-x)/(x^-2x) Come sopra sono riuscito a scomporlo fino a farlo diventare: +8x^4-25x^3+3x^2=0 grazie
4
13 mag 2011, 18:03