Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Recentemente è stata notata una curiosa coincidenza. Tutti i più grandi mateninja della storia del villaggio della Retta hanno avuto per forza vitale un intero positivo $N$ tale che esistono $ a_1, ..., a_2007 $ interi positivi per cui $ a_1<a_2<...<a_2007 $ e $ N=1/(a_1)+2/(a_2)+...+2007/(a_2007) $ . Trovare la somma di tutti i valori di N di forza vitale (indicare le ultime 4 cifre se il risultato è maggiore di 9999.
Io ho trovato come successioni buone le progressioni aritmetiche che hanno ragione pari ...
Salve, e buon Natale a tutti !
mi occorre il vostro aiuto,
ho questa matrice $((1,1),(2,2))$ so che è diagonalizzabile perchè ha 2 autovalori distinti che sono : 0,1.
Posso dire che la matrice diagonale simile è $((0,0),(0,3))$ che sarebbe la matrice con gli autovalori sulla diagonale?
il dubbio mi viene perchè questa matrice ha una colonna di tutti 0.
Grazie a chi mi aiuterà!
Buongiorno. All'orale, il mio Prof. di Fisica II, fa come 1° domanda sempre la solita: "Scrivimi le equazioni di Maxwell in caso stazionario e non, nel vuoto (senza materia) e nella materia, e poi dimostrami [e ne dice una]". Alla richiesta di scriverle, io risponderei nel modo seguente.
CASO STAZIONARIO NEL VUOTO
1) $div vecE_0=rho/epsilon_0$
2) $div vecB_0=0$
3) $vec(rot)vecE_0=0$
4) $vec(rot)vecB_0=mu_0vecJ$
CASO STAZIONARIO NELLA MATERIA
1) $div vecD=rho$
2) $div vecB=0$
3) ...
Equazioni di secondo grado con radicali
Miglior risposta
c'è qualcuno che sa risolvere la prima espressione, così io posso fare le altre? ho provato ma non so come fare...
basta che mi fate una delle espressioni con la X, grazie a tutti
ciao a tutti,
se istallo un antivirus in windows posso usarlo anche in linux o è limitato l'utilizzo al so nel quale viene istallato?
grazie in anciticipo
Devo dimostrare che la seguente espressione è una funzione costante di x
$ sin ^2(x+alpha )+sin^2(x+beta)-2cos(alpha-beta)sin(x+alpha)sin(x+beta) $
Non riesco a saltarci fuori Risolvendola, viene fuori una cosa mostruosa; per di più non è riconducibile a niente
Grazie in anticipo
Ciao a tutti!
Sono alle prese con questo esercizio che mi sembra semplice eppure non mi esce
Testo:
un operaio esercita una forza [tex]F[/tex] per spingere a velocità costante una cassa di massa [tex]26.6kg[/tex] su una superficie orizzontale per un tratto lungo [tex]9.54m[/tex]. La forza [tex]F[/tex] è diretta verso il basso con un angolo [tex]\theta=32°[/tex] rispetto all'orizzontale, e il coefficiente di attrito tra la cassa ed il piano vale [tex]\mu_d=0.21[/tex]. Determinare il lavoro ...
Salve, non ho capito un tratto della risoluzione della seguente disequazione:
\(\displaystyle \ln {(1+cos(x))}+x^2/4 \leq \ln {2} \ \forall x \in (- \pi. \pi) \)
Prima di tutto si pone la funzione \(\displaystyle f(x)= ln {(1+cos(x))}+x^2/4 - \ln {2} \ \forall x \in (- \pi. \pi) \)
Poi si decide di studiare il segno della funzione f(x), in particolare quando \(\displaystyle f(x) \leq 0 \). Per fare questo si decide di fare come prima cosa lo studio della derivata prima di f(x), ...
Non mi è chiaro il calcolo di questo esercizio:
una spira circolare di raggio $a=2.5m$ è immersa in un campo magnetico $B(r,t)=B_0/rt\hat{u_z}$ e per $r>0$, $B_0=0.2$.
Determinare il flusso $\phi_B$
Io l'ho sempre calcolato usando l'area (del cerchio), mentre in questo caso non capisco perchè nella soluzione me lo risolve con la circonferenza.
Io avevo fatto:
$\phi=\int_{S}^{}B*dS=\int_{0}^{a}B_0/rt\pir^2dr=\piB_0ta^2/2$ $Wb$
Nella soluzione invece mi fa
$\phi=\int_{S}^{}B*dS=\int_{0}^{a}B_0/rt2\pirdr=\pit$ ...
Un condensatore viene caricato e poi scollegato da una batteria avendo cura che i cavi connessi con le armature non vengano in contatto tra loro. Aumentando la distanza fra le armature ciascuna delle seguenti quantità:
a)Aumenta.
b) Diminuisce.
c)Rimane inalterata.
i) $C$
ii) $Q$
iii)$ E$ tra le armature.
iv)$Delta V$
v) L'energia immagazzinata nel condensatore.
Scusatemi, ma cosa accade
Io penso che accade questo:
Si ha quindi una ...
Una domanda che mi assilla da parecchio, ma come si leggono le formule matematiche?
Mi spiego: uno spazio percorso in un determinato tempo viene chiamato velocità ed è essenzialmente(e molto alla buona) una divisione, un rapporto.
Ma se io dovessi considerare uno spazio moltiplicato un tempo(tralasciando il fatto che realmente non è di alcuna utilità tale prodotto) come dovrei leggerlo?
Nel rapporto uso spazio percorso "in" un tempo, ma nel prodotto dal punto di vista del linguaggio come ...
Salve ragazzi, spero possiate chiarirmi questo dubbio che ho.
Se ho un campo vettoriale $ F $ e devo calcolarne il lavoro (in valore assoluto, quindi indipendentemente dall'orientazione) su una curva $ gamma (t) $ è indifferente se lo calcolo tramite $L= int<RotF,n> ds $ indicando con n il versore ortogonale alla curva e la formula $ L=int <F(gamma (t))*gamma'(t)> dt $ con la curva parametrizzata in t?
Oppure ci sono casi in cui il teorema del rotore non è applicabile?
In risposta al quesito da me suggerito a MAMO
(vedi post "esercizio algebrico-trigonometrico" in "Superiori")
avevo pensato che si potesse applicare il metodo
di "induzione completa".
Tuttavia mi sono trovato di fronte a questo dubbio:
se si ammette che una certa proprieta' valga per il valore N
(per poi cercare di dimostrare che vale anche per N+1)
e' poi possibile ipotizzare che la stessa proprieta' valga gia'anche per N-1? O supporre cio' equivale ad un circolo vizioso (..il cane ...
Buongiorno,
Data la seguente funzione : $ sqrt(|x-1|)-3*log(1+sqrt(|x-1|)) $
Dopo aver studiato la derivata prima e aver trovato un punto di cuspide nel punto di coordinate (1,0) e date le crescenze negli intervalli ]-3,1[ e in ]5,+infinito[ e le decrescenze negli intervalli ]-infinito,-3[ e in ]1,5[ e che i punti -3 e 5 sono punti di minimo assoluto e che il punto 1 è punto di massimo relativo; non ho capito per quale motivo sul mio libro, senza calcolare la derivata seconda, vengano individuati due punti di ...
Buongiorno,
Ho la seguente funzione : $ sqrt(|x-1|)-3*log(1+sqrt(|x-1|)) $
Dopo aver studiato la derivata prima e aver trovato un punto di cuspide nel punto di coordinate (1,0) e date le crescenze negli intervalli ]-3,1[ e in ]5,+infinito[ e le decrescenze negli intervalli ]-infinito,-3[ e in ]1,5[ e che i punti -3 e 5 sono punti di minimo assoluto e che il punto 1 è punto di massimo relativo; non ho capito per quale motivo sul mio libro, senza calcolare la derivata seconda, vengano individuati due punti di ...
O Un condensatore di elevata capacità è collegato in serie ad un condensatore di capacità molto piccola. Cosa si può dire della capacità equivalente?
a) E' leggermente superiore a quella più elevata.
b) E' leggermente inferiore a quella più elevata.
c) E' leggermente superiore a quella più piccola.
d) E' leggermente inferiore a quella più piccola.
Risposta.
a) E' vera la a) cioè e' leggermente superiore a quella più elevata.
In questo caso la formula è $1/(C_(eq)) = 1/(C_1) + 1/(C_2)$
Cosa ne dite??
Ciao ragazzi, mi è sorto un dubbio guardando un esercizio su internet
Data per esempio un applicazione lineare $ f : RR^3 ---> RR^3 $ e dati
$ f (1,1,1)= (1,1,0) $
$ f (0,1,1) = (1,0,1) $
$ f ( 0,-1,1) = (0,0,0) $
Trovare $ Im $ e $ Ker (f) $
Prima bisogna vedere se $ ((1,1,1), (0,1,1), (0,-1,1) $ sono linearmente indipendenti.
Fatto questo devo mettere i 3 vettori $ ((1,1,0) , (1,0,1) , (0,0,0) $ in forma matriciale per trovare l immagine. Qua arriva il problema , non riesco a capire perche li mette in vettori colonna i ...
Buongiorno, iniziavo a studiare un po' di geometria e leggendo le varie definizioni mi soffermavo a pensare a questo:
Dalle definizioni scaturisce che il punto non ha dimensioni, non occupa spazio ma indica solo una posizione. Quindi in realtà non è niente.
La retta poi viene anche considerata come "Insieme di punti". Infatti, dalle proprietà, risulta che sulla retta giacciono infiniti punti.
Orbene, mi chiedo.....come fa la retta che è un insieme di "niente" (poichè i punti non hanno ...
Ho un condensatore quadrato di lato L=20cm e armature distanti d=1mm con carica iniziale Q=1.06nC.
Devo determinare la differenza di potenziale ai suoi capi e sapendo che poi viene riempito per metà del suo volume con un dielettrico spesso h=d/2, devo determinare la costante dielettrica k se la carica finale Qf=1.5Q.
Mi viene un numero strano...
$C=\epsilon_0L^2/d=354pF$ quindi $\DeltaV=Q/C=3V$
$C_0=\epsilon_0L^2/h=708pF$ la metà riempita di aria
$C_k=kC_0$ la metà riempita di ...
1) Abbiamo un certo numero di scatole identiche, le cui dimensioni a < b < c sono espresse da valori interi, in pollici, e sia la lunghezza, che la larghezza e l'altezza sono minori di 36.
Se le accatastiamo una sull'altra a formare una pila, la superficie esterna del solido risultante è esattamente la metà di quella che si sarebbe ottenuta se le scatole fossero state sistemate in contatto una di fianco all'altra a formare una fila e 2/5 di quella che si sarebbe ottenuta mettendole in contatto ...