Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Sia $V$ uno spazio vettoriale, infinito dimensionale, sul quale è definita una forma hermitiana semidefinita positiva $<,>$
E' possibile avere, un tale spazio, con entrambe le seguenti affermazioni vere?
Punto1) Esiste un unico $v_0 in V$ tale che $v_0!=0$ e $<v_0,v_0> = 0$
Punto2) Esiste una successione di elementi ${v_n}_(n in NN)$ di $V$, con $v_n$ linearmente indipendente da $v_0$ per ogni ...
Devo dimostrare che una successione di funzionali lineari converge debolmente alla delta di dirac. Il problema è che la mia dimostrazione, a differenza di quella sul libro, è troppo semplice. Mi viene il dubbio di aver trascurato qualcosa.
Si mostri che, data la funzione \(\displaystyle p(x) \), pari e “regolare” sull’asse reale e tale che
\(\displaystyle \int_{\Bbb R} p(x) = 1 \)
allora la successione di funzionali
\(\displaystyle \delta_{x_o}^{(n)} (\varphi) := \int_{\Bbb R} np[n(x-x_0)] \, ...
Salve, ho un problema riscontrato in un esercizio di statistica:
Ricavare la distribuzione condizionata di Y|X e la distribuzione di X:
$ f(x,y,;a,b)=1/(a*b) * x^(1/a-2)*exp^(-1/b*y/x) $
con $ x\in (0,1), y \in R^+ $
Sinceramente non so come si possa effettuare un operazione del genere visto che all'esponenziale si ha y/x. Spero che qualcuno mi possa aiutare.
Ciao a tutti, ho un problema che non so risolvere:
In Fig. 7-32, a constant force $F$ a of
magnitude $82.0 N$ is applied to a $3.00kg$ shoe box at angle $ 53.0°$ , causingthe box to move up a frictionless ramp at constant speed.
How much work is done on the box by $F$ a when the box has moved
through vertical distance $h = 0.150 m $?
Non ho veramente idea da dove cominciare. In un primo momento ho pensato ...
Problema 3. Sia N l’insieme degli interi positivi. Determinare tutte le funzioni g: N→N tali che (g(m) + n)(m + g(n))
è un quadrato perfetto per tutti gli m,n∈N.
Salve, avrei due dubbi nella risoluzione di alcuni esercizi riguardanti i due argomenti in titolo
i) Iniziamo su quello sui polinomi ciclotomici (che a dir la verità non ho molto chiari, quindi è molto possibile che dica qualche cosaccia )
Sia $p(x)=x^2+1 in Z11[x]$. Trovare il campo di spezzamento di tale polinomio.
Tale polinomio è irriducibile poiché non ha radici e dunque spezza in $ F11[x]/(p(x)) $ (campo isomorfo al campo di spezzamento, con 121 elementi).
Quindi trovare in nel campo di ...
Salve a tutti, dovrei studiare questa trasformazione geometrica.
{x'= -y-1
{y'= x+1
Andando per esclusione ho trovato che si tratta di una rotazione. Tuttavia, vorrei sapere da voi quali sono gli step necessari per studiare una trasformazione geometrica, poichè il libro non li riporta e parla solo di "studio della matrice dei coefficienti".
Io ho fatto le matrici e so come costruire la matrice dei coefficienti, ma non riesco a capire come ciò possa essere utile per studiare una trasformazione ...
Salve a tutti, sono alle prese con un problema del Bennati di cui non mi torna un pezzo:
http://www.dic.unipi.it/stefano.bennati ... Aerosp.pdf
http://www.dic.unipi.it/riccardo.barsot ... uzione.pdf
non ho capito nell'ultimo punto come fa a ricavare l'espressione delle forze normali; in particolare non mi torna perchè compare il v2(rad2xl).
Ringrazio anticipatamente chiunque volesse darmi una mano
Ciao, non riesco a risolvere questa serie. Ho provato a usare anche gli sviluppi mclaurin ma mi trovo uguale a 0..
$ \sum_{n=1}^\infty 1/sqrt(n) ( e^ (1/sqrt(n) ) - 1/sqrt(n) - 1) $
Ciao a tutti,
volevo sapere se questa dimostrazione è corretta.
Dimostrare che $ n^2 ≥ 2n + 5 $ per ogni $ n ≥ 4 $.
Base dell'induzione $ n = 4 $ quindi $ 16 ≥ 13 $.
Suppongo che $ n^2 ≥ 2n + 5 $ e dimostro che $ (n+1)^2 ≥ 2(n+1) + 5 $
$ (n+1)^2 ≥ 2(n+1) + 5 $ --> $ n^2 + 2n + 1 ≥ 2n + 2 + 5 $ --> $ n^2 ≥ 6 $
dimostro quindi che $ 2n + 5 ≥ 6 $ --> $ 2n ≥ 1 $ che vale per ogni $ n ≥ 4 $.
Sto cercando di risolvere questo limite solo che non ho il risultato e quindi non sono sicuro del procedimento. Per la risoluzione non posso usare de l'Hopital.
Il limite è $lim_(x->1)([1/(sqrt(e))*cos(x-1)-e^{(x^2-2x)/2}]/[(x-1)(x-1)])$
Io avevo proceduto aggiungendo cambiando segno al numeratore, aggiungendo e togliendo 1 in modo da ricondurmi ai limiti notevoli del coseno e di nepero, e portando al denominatore 1/(sqrt(e). A questo punto svolgendo normali operazioni algebriche otterrei 1/2*(sqrt(e), ma ho forti dubbi sul risultato. ...
salve vado dritto al sodo:
studiare la seguente serie al variare di $ a>0 in R $
$ sum_(n =1)(sqrt(n+1)-sqrt(n))/n^a $
ho pensato di usare il criterio degli infinitesimi perchè nella forma $n^p*a_n$(le radici sono sempre positive e $ 1/n^a $ è compreso tra 0 e 1 oppure positivo)
quindi:
$ lim_(x -> oo) 1/n^a*((sqrt(n+1)-sqrt(n))*(sqrt(n+1)+sqrt(n)))/(sqrt(n+1)+sqrt(n)) $
che dopo vari calcoli diventa:
$ lim_(n -> oo) 1/(2n^(a+1/2))=1/2lim_(n->oo)n^(-a-1/2) $
studiando l ottengo:
$ { ( 0 <=> -a-1/2>0 <=> a<-1/2),( 1 <=>-a-1/2=0 <=>a=1/2 ),( \oo <=> -a-1/2<0 <=> a>-1/2 ):} $
è corretto?
ho dubbi su l=1 perchè nel limite sarebbe $1/\oo^0 $ che è una forma ...
ciao a tutti...queste vacanze sono dedicate interamente all analisi II come fare per capire se l’equazione $y^2 + 3xy^2 + x^3y − 5y^3 + 2x = 0$ definisce implicitamente in un intorno del punto $(0,0)$ una funzione del tipo $y = f(x)$ oppure del tipo $x = f(y)$?
Salve,
vorrei proporvi un quesito.
Sia S una superficie con una data parametrizzazione, e sia F un campo vettoriale. Si determini il flusso del campo F attraverso S in modo che la normale punti verso l'alto.
Il quesito è il seguente:
Se la parametrizzazione con cui è assegnata la superficie S ha la normale che punta verso il basso, per calcolare il flusso del campo F è necessario cambiare la parametrizzazione di S oppure basta calcolare l'opposto?
Grazie.
Buongiorno ragazzi,
ho un problema con il seguente esercizio:
Determinare la parabola del piano euclideo, avente per asse la retta $r: x+2y-3=0$ e tangente alla retta $s:y-2=0$ nel punto $A=(3,2)$.
Il ragionamento che ho fatto è il seguente:
Essendo la retta r l'asse di simmetria di questa parabola posso trovare il punto $ A' $ simmetrico ad $A$ rispetto alla retta r. (eseguendo i calcoli trovo le coordinate di $A'=(7/5,-6/5)$)
Cerco ora la ...
Salve, mi sono ritrovato alle prese con un esercizio di algebra che mi ha messo leggermente in crisi.
Sia $sigma=sqrt(2)+root(3)(3)$
Trovarne il polinomio minimo in $Q(sqrt(2))$ e una base della estensione di tale campo in $Q(sigma)$
Adesso illustro il mio ragionamento. L'intuito mi suggerisce che tale polinomio debba avere grado 3. In effetti, trovo tale polinomio smanettando un poco coi numeri di cui sigma è zero. $p(x)=x^3-3sqrt(2)x^2+6x-(2sqrt(2)+3)$
Adesso, se dimostro che tale polinomio è irriducibile ho ...
Buongiorno,
Mi sto esercitando sui limiti e ho trovato tre esercizi che sono riuscito a risolvere (forse ) solo sfruttando gli infinitesimi. Vorrei sapere se con semplici manipolazioni algebriche avrei potuto risolverli ugualmente ( cioè senza usare Sviluppi di Taylor, Teoremi particolari es. Hopital etc..) e sapere se ho risolto correttamente.
Eccoli:
$\lim_{x \to \infty} (ln(1 + a/x))/(e^(a/x) - e^(b/x))$ con $ a,b in RR ,a != b$
$y = 1/x$ $ -> $ $\lim_{y -> 0} (ln(1 + ay))/(e^(ay) - e^(by)) = \lim_{y -> 0} (ay +o(y))/(1+ay - 1 - by +o(y)) = \lim_{y -> 0}(y(a + (o(y))/y))/(y(a-b+(o(y))/y) )= a/(a-b)$
$\lim_{x -> 0}(x(2^x - 3^x))/(1-cos3x)$
$\lim_{x -> 0}(x(2^x - 3^x))/(1-cos3x) ->\lim_{x -> 0} ((9x) * (x))/(1-cos3x) * (2^x - 3^x)/(9x) -> \lim_{x -> 0} 1/(1/2) * (e^(x*ln2) - e^(x*ln3))/(9x) ->$ sviluppo ...
Ciao a tutti, sto affrontando l'esame di analisi 2 e sto studiando autonomamente; ho incontrato dei problemi con gli integrali tripli in particolare con i solidi di rotazione, non sò che tipo di formule vadano applicate o come si svolgano alcuni tipi di esercizi; posto un esempio in modo da far capire quale è la tipologia di esercizi che dovrei affrontare:
Esercizio:
Data la regione del piano xz $ D={(x,z) \epsilon R^2: x >= 0, 4 <= x^2 + z^2<= 9, 3z^2 <= x^2 } $ disegnare il solido E, contenuto nel semispazio $ y >= 0 $, ottenuto ...
Salve a tutti devo capire il seguente esercizio svolto della prof $\lim_{n \to \infty}(arctan nx)/n$ $x in RR$ perchè fa zero?
Grazie
ciao a tutti cercavo di risolvere un problema come da titolo. in particolare:
$ lim_(k -> +oo) 1/k int_(E_k)(sin(x/k))/(x^3 sqrtx)dx $ con $ E_k=[k^(-1), +oo] $
prima di tutto ho fatto il cambio di variabili $ y=kx $ sostituendo e portando nell'integrale $1/k$ (possibile perchè il dominio di integrazione non dipende più da k), ottengo $ lim_(k->+oo)int_(1)^(+oo)k^(3/2)sin(y/k^2)/(y^3 sqrty)dy $ .
il problema sorge nel trovare un maggiorante per la successione di funzione $ f_n:=k^(3/2)sin(y/k^2)/(y^3 sqrty) $ per poter applicare il teorema della convergenza dominata di ...