Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Sia $f(x,y)= x^2+y^2-1$ e $g(w) = sqrt(w) + ln(w)$. Se io volessi calcolare $g(f(x,y))$ otterrei $g(f(x,y))=sqrt(x^2+y^2-1) + ln(x^2+y^2-1)$. Questo risultato è corretto? Datemi conferma, siccome sono alle prime armi con le funzioni in due variabili.
Ma se invece volessi calcolare $f(g(w))$, come dovrei fare? La composizione di funzioni in generale non è commutativa e mi aspetto che la cosa valga anche in $RR^2$, però la differenza qui è che voglio applicare una funzione $g(w)$, così ...
Salve, ho bisogno di un parere su un integrale, sicuramente c’è qualcosa che mi sfugge e sono qui per chiedervi cortesemente una mano
$ int_(0)^(1) y*(-lny) dy=<br />
-(lny)*(y^2/2)- int_(0) ^ (1) - (1/y)*(y^2/2) dy = -((y^2*lny)/2)+1/2* int_(0)^(1) y dy= -((y^2*lny)/2)+1/4 $
Questa è la mia soluzione, integrando per parti, sul foglio di esercizi la soluzione è semplicemente 1/4
Sicuramente è qualcosa che non ricordo per via del tempo, ringrazio anticipatamente chi vorrà darmi una mano
Ho appena venduto i miei appunti e l'acquirente Ha pagato tramite PayPal, cosa devo fare?
Cerco ripetizioni diritto Turismo culturale
Miglior risposta
Vorrei affrontare l'esame di DIRITTO DEL PATRIMONIO CULTURALE E DEL TURISMO, come singolo esame per capire se ho il tempo e la capacità di sostenere un percorso di laurea.
Buonasera
Come ho scritto in altro post io sono uno studente universitario (fuori corso). Per fare esperienza ho iniziato a fare il supplente in una scuola e in un meme a caso un mio studente così dal nulla mi ha mostrato questo integrale:
\begin{equation}
N_{\lambda}(a,b)=\frac{1}{2\pi i} \int_{-\infty}^{\infty} 1- dt\,log\Biggl( 1-\frac{\lambda\,log\Bigl(\frac{1}{2}-it\Bigr)}{b+\frac{1}{2}-it} \frac{d}{dt} ...
Mentre scrivevo lo sviluppo in serie di Taylor di $exp(-n)$ mi è sorto un dubbio.
Ricordando che
$exp(x) = 1 + x + x^2/2 + o(x^2)$
vale $\forall x$ reale, allora ponendo
$x := -n$
ottengo
$exp(-n) = 1 - n + n^2/2 + o(n^2)$.
Il limite all'infinito di $exp(-n)$ è chiaramente $0$, ma se svolgo il limite dello sviluppo, ovvero
$\lim_{n->\infty} 1 - n + n^2/2 + o(n^2)$
per la gerarchia degli infiniti il termine al quadrato è dominante e quindi il limite è $+\infty$.
In generale, aggiungendo ...
Come spesso succede, spariscono i thread.
Ad ogni modo, per il primo problema della forza sulla spira, direi che è sufficiente considerare il generico tratto infinitesimo di spira di lunghezza $dl=a\ d\theta$, alla generica distanza $x=a\ \cos \theta$ dall'origine, determinare la forza radiale $dF=BI dl$ e integrale, duplicando la sua componente lungo x, per $0<\theta<\pi$.
Il secondo problema, purtroppo, non sono nemmeno riuscito a leggerlo.
Buon giorno. Ho questo dubbio: per tre punti non allineati passa uno e un solo piano che si può ricavare con questo determinante: $|(x-x_1, y-y_1, z-z_1),(x_2-x_1, y_2-y_1, z_2-z_1),(x_3-x_1, y_3-y1, z_3-z_1)|=0$ e fin qui ci sono.
Il libro che uso dice che questo determinante è equivalente a questo:
$|(x, y, z, 1),(x_1, y_1, z_1, 1),(x_2,y_2,z_2,1),(x_3,y_3,z_3,1)| = 0$.
Io aldilà di svilupparli ed effettivamente vedere che fanno 0, non capisco la ragione per cui da uno si debba vedere l'altro e che utilità abbia la seconda. Sapreste spiegarmelo?
$ T_{AB}(2L)=4qL $$ CD $Salve, ho svolto un esercizio sulle verifiche di resistenza di travature. Riporto il testo qua di seguito
Scegliendo arbitrariamente il verso dei vettori $V_A$,$V_D$,$V_C$ verso l'alto e $H_C$,$H_D$ verso destra. Ho da subito calcolato le reazioni vincolari ottenendo: $H_C=0$, $H_D=-2qL$, $V_D=2qL$, $V_A=4qL$, $V_C=2qL$. Procedo al calcolo ...
Salve.
Mi sono imbattuto in una lettura che riporta il seguente passaggio:
$arccos(x+1) < 1$
$x+1 > cos(1)$
Dove abbiamo usato che la funzione arcocoseno è strettamente decrescente nel suo insieme di definizione.
Volevo comprendere meglio la frase riportata.
Innanzitutto, data la disequazione di partenza, quella che noi applichiamo ad ambo i membri è la funzione coseno.
Il fatto che la disequazione cambi verso è quindi dovuto all'applicazione di tale funzione, che ...
Salve a tutti, ho un dubbio sulla risoluzione di questo esercizio
$34(3/5)^(x)<25*(9/25)^x+9$
Riscrivo $9/25$ come $(3/5)^(2x)$
Introduco una variabile ausiliaria imponendo $(3/5)^x=t$
Riscrivo pertanto
$34t – 25t^2-9<0$
Sapendo che la base dell’esponenziale è $0<a<1$ inverto il segno della disequazione.
$34t – 25t^2-9>0$
le due soluzioni sono $t_1=9/25$ e $t_2=1$
impongo $t_1=(3/5)^x$ da cui ottengo quindi $9/25=(3/5)^x$
impongo ...
sera, volevo capire un passaggio del libro che non capisco a fondo.
devo calcolare il gradiente per r di: $nabla_x(1/(|vecr-vecr'))$
Io ho operato come (faccio solo la componente x): $[nabla_r(1/sqrt((x-x')^2+(y-y')^2+(z-z')^2))]_x=$
$=(sqrt((x-x')^2+(y-y')^2+(z-z')^2))^(-1/2)=-1/2(sqrt((x-x')^2+(y-y')^2+(z-z')^2))^(-3/2)*2(x-x')=(x-x')/(|vecr-vecr'|^3)$
evidentemente y,z si comportnao uguali e ho: $(r-r')/(|vecr-vecx'|^3)$
Detto ciò il suggerimento del libro è il seguente (per svolgere il calcolo) - e io non capisco bene il suggerimento- :
$d/(dx)|g(x)|=(g(x))/(|g(x)|)(dg)/(dx)$
Cioè sembra quasi suggerire di chiamare $|vecr-vecr'|=|g(x)|$ e fare la derivata del ...
Ho questo problema: determinare l’equazione cartesiana e successivamente le equazioni parametriche della sfera
tangente al piano $π : 3y − 2z + 3 = 0$ nel punto $P = (−1,−1,0)$ ed avente centro sul piano $π′ : 3x+y+2z+5=0$
Il procedimento a cui ho pensato è questo: per trovare l'equazione mi serve trovare il centro e il raggio. Una volta noto il centro, per avere il raggio calcolo la distanza dal punto di tangenza al centro oppure la distanza dal punto di tangenza al piano ...
Problemata di Eloisa
Miglior risposta
Sto studiando la filosofia medievale e mi sono imbattuto nel personaggio di Abelardo e mi sono stupito che nessuno abbia mai parlato della filosofia della sua sposa Eloisa.
Si parla sempre della passionalita di Eloisa, ma non dimentichiamo che era anche una filosofa e molti studiosi parlano di 42 problemata.
Esistono e sono fruibili? Se si; dove?
Ringrazio in anticipo!
Aggiunto 29 secondi più tardi:
scusate per gli errori ma altrimenti il server impazzisce
Sto provando a risolvere questo limite:
lim x->infinito (e^x +2x)^(1/x) che presenta una forma indeterminata. Il problema e` che applicando il procedimento descritto, quindi:
lim x->infinito e^(1/x * ln(e^x +2x) ) e applicando il teorema esce:
lim x-> infinito ((e^x+2)/(e^x+2x)) e da qui non so come procedere. Il risultato dovrebbe essere e^3
Buonasera.
Sapreste indicarmi un eserciziario alternativo al Marcellini Sbordone su integrali multipli, integrali di superficie e forme differenziali lineari?
Riporto il seguente studio di funzione, nella speranza che mi venga chiarito un dubbio in merito alla derivata seconda di $ f $.
Data la funzione \(f : \mathcal{D} \to \mathbb{R}\) di legge: \[
f(x) := \begin{cases}
(x-1)e^{\frac{1}{x-1}} & \text{se } x > 1 \\
0 & \text{se } x = 1 \\
-(x-1)e^{\frac{1}{x-1}} & \text{se } x < 1
\end{cases}
\] il proprio dominio naturale risulta essere \[
\mathcal{D} = \mathbb{R}
\]
in quanto definita in tutto $ \mathbb{R} $. Per quanto ...
Considera un triangolo ABC e traccia la bisettrice BK. Dimostra che AK^B > AB^K.Come si svolge?
Devo segnalare per ciascuna affermazione se questa sia vera o falsa, su queste due sono in dubbio.
"Poni f(x) continua. Se $ int_(a)^(b) f(x) dx =0 $ allora sicuramente puoi affermare che:
1. a=b
2. a=-b e f(x) è dispari"
Per la prima mi verrebbe da dire vero perchè se l'intervallo lo si riduce al un solo punto l'area sottesa al grafico è nulla, ma non sono tranquillo nell'affermarlo.
Per la seconda mi verrebbe da dire vero anche per questa, perchè le sue porzioni di grafico si bilancerebbero ...