Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Martydm03.
Salve a tutti, sto risolvendo il seguente problema di fisica: Un punto si muove con velocità relativa costante vr = 0.5 m/s in direzione radiale verso il centro di una piattaforma circolare orizzontale che ruota con velocità angolare w= 2 rad/s. All’istante iniziale t' = 0 il punto si trova ad una distanza R = 1 m dal centro della piattaforma. Determinare in direzione e modulo la velocità assoluta del punto all’istante t* = 3 s. Nello svolgimento ho pensato di fare riferimento a questa ...

Angus1956
(a) Fare un esempio di un rivestimento connesso non normale $p:(\tilde X, \tilde x_0)->(K,x_0)$ dove $K$ è la bottiglia di Klein. (b) Si scelga $x_0inK$ e $\tilde x_0 in p^-1(x_0)$. Dire a cosa corrisponde $H=p_{star}(pi_1((\tilde X, \tilde x_0)))$ in $pi_1(K,x_0)$ per il rivestimento scelto. (c) E' vero che $H$ non dipende dal punto base $\tilde x_0 $ scelto?. Io ho fatto così: (a) Consideriamo la glissosimmetria $a: (x,y)->(-x,y+1)$ e la traslazione $b: (x,y)->(x+1,y)$, abbiamo che $pi_1(K)$ è ...
0
11 gen 2024, 13:44

HowardRoark
Devo determinare graficamente l'angolo $alpha$, $3/2pi<alpha<2pi$, tale che la sua cosecante sia $2/3sqrt(3)$. Sicuramente c'è qualcosa che mi sfugge, ma un angolo con quella cosecante non dovrebbe trovarsi nel primo o nel secondo quadrante? Nel quarto quadrante il seno è negativo, mi viene da pensare che $alpha$ qui non esista. Oppure l'esercizio si riferiva a $pi/2<alpha<pi$ (magari c'è un errore nel testo dell'esercizio), in questo caso sarebbe semplice trovare ...
0
12 gen 2024, 12:39

giantmath
vorrei conferma di aver capito bene. per una trasformazione adiabatica reversibile $ \DeltaS_U=0 $ => $ \DeltaS_a=0 $ perchè non c'è scambio di calore => $ \DeltaS_s=0 $ per una trasformazione adiabatica irreversibile $ \DeltaS_U>0 $ => $ \DeltaS_a=0 $ perchè non c'è scambio di calore => $ \DeltaS_s=nc_vln(T_f/(T_i))+nRln(V_f/(V_i)) >0 $ altra cosa, un'espansione libera è adiabatica e isoterma. pertanto essendo adiabatica Q=0, essendo isoterma $ \DeltaU=0 $ e pertanto L=0 tra l'altro essendo pressione ...

angela.russotto
Perchè un polinomio di grado dispari deve contenere nella sua fattorizzazione almeno un fattore di primo grado? Il libro dopo aver esposto il teorema degli zeri reali di un polinomio ( un polinomio di grado n, ha al massimo n soluzioni reali), manifesta come stabilito il punto della domanda di cui sopra e quindi dice che un polinomio di grado dispari ha sempre almeno una soluzione reale; non capisco sulla base di cosa si possa affermare che un polinomio di grado dispari si possa sempre ...

Adryy_0
Avrei bisogno di aiuto con i miei due problemi di matematica,ho provato di tutto ma non capisco come si svolgano -PROBLEMA 1: Un arco lungo 5cm appartiene a una circonferenza di raggio 18cm.Calcola l'area del settore circolare delimitato dell'arco -PROBLEMA 2: Il diametro di una circonferenza misura 7 m.Calcola l'area del settore circolare delimitato da un arco lungo 2 pigreco m.Scrivi il risultato sia lasciando pigreco sia approssimando pigreco con 3,14 Grazie per l'aiuto :)
1
11 gen 2024, 18:10

tkomega
In figura (parte A) è rappresentata una superficie poggiata sul piano xy di un sistema di riferimento cartesiano. Nella parte B della figura la superficie è rappresentata vista dall’alto. Le dimensioni della superficie sono: h=10 cm, L=8 cm e l=5 cm, l’angolo theta è pari a 45 gradi. Calcolare il flusso attraverso al superficie di un campo elettrico uniforme che in coordinate cartesiane assume la forma $vecE = 1 hatx + 5 haty N/C $ Come ho risolto io: Disegno e calcolo le componenti lungo gli assi x e y ...

dattolico_007
Salve a tutti, ho un dubbio con un esempio di sottospazio affine. Sia $A_2$ il piano affine reale associato allo spazio dei vettori liberi $V^2$. Siano $A\in A_2, v\inV^2$. Considero $W=<v>\inV^2$. Allora $S(A,<v>)$ il sottospazio affine di $A_2$ passante per $A$ e di giacitura $<v>$ sarà formato da ${P\inA_2 | vec(AP) \in <v>}$. Ora, un vettore libero non è altro che una classe di equivalenza formata da tutti i vettori applicati ...

Davv12
Salve a tutti sto cercando di risolvere il seguente problema: Una massa scivola su di una guida. La guida e' rettilinea sino al punto A, poi costitutita da segmenti di circonferenza di raggio R=10 m sino al punto D ed infine nuovamente rettilinea sino al punto E. Il tratto A-D e' privo di attrito mentre tra D ed E la guida `e scabra con coefficiente di attrito dinamico μ=0.85 ed angolo θ = 20◦ Si determini: 1) la massima altezza h che permette alla massa di restare in contatto con la ...

giantmath
Un recipiente cilindrico, isolato dall’ambiente, è diviso a metà da un pistone conduttore, in grado di scorrere senza attrito, inizialmente bloccato. Una delle due parti del cilindro contiene una mole di argon ad una pressione di 4 atmosfere e l’altra parte contiene elio ad un’atmosfera. Entrambi i gas possono essere considerati ideali e monoatomici. La temperatura del sistema è inizialmente di 300 K. Si lascia il pistone libero di muoversi e si aspetta che il sistema raggiunga una situazione ...

samurd
Buonasera chiedo aiuto per il seguente esercizio di dinamica: Un blocco di massa $100g$ comprime una molla di costante elastica $k = 20 N/m$. Il blocco viene lasciato libero e dopo un tratto orizzontale privo di attrito, sale lungo un piano scabro con coefficiente d’attrito dinamico $0.5$ e inclinato di $30°$. Calcolare la quota massima raggiunta dal corpo ($h_max$). usando la conservazione dell'energia: $E_(m,i)=1/2*k*x^2$ ovvero la sola ...

m.e._liberti
Ho modificato il messaggio per porvi una domanda. Un proiettile di massa m urta in modo anelastico un'asta di massa M libera di ruotare senza attrito attorno ad un asse orizzontale passante per il suo centro. La velocità iniziale del proiettile è $v_0$ mentre quella di impatto è $v_1$. L'accelerazione angolare dell'asta dopo l'urto è w. Come calcolo l'energia dissipata durante l'urto?

Angus1956
Sia $p:(\tilde X, \tilde x_0)->(X, x_0)$ un rivestimento connesso per archi e localmente connesso per archi. E' vero che presi $\gamma$ e $\gamma'$ due cammini continui in $\tilde X$ che partono da $\tilde x_0$ e arrivano in $\tilde x_0$ se sono gli stessi in $\pi_1(\tilde X, \tilde x_0)$ allora i cammini $p \circ \gamma$ e $p \circ \gamma'$ sono gli stessi in $\pi_1(X, x_0)$? Dovrebbe essere falso poichè se considero il rivestimento universale di $S^1$, ...
1
11 gen 2024, 12:54

tkomega
Calcolare l’intensità del campo magnetico lungo la circonferenza mediana di un solenoide toroidale costituito da N = 2 × 10^4 spire e avente raggio del toroide R = 30 cm e raggio degli avvolgimenti r = 2. mm in funzione dell’intensità della corrente I (vedi figura 2). Si consideri il toroide nel vuoto. Risolverei il problema così: $ oint_(B) vecBdvecl = mu_0 I <=> B2piX = Nmu_0 I $ dove N è il numero di spire e X è il generico raggio della circonferenza, quindi: $ B = (Nmu_0 I)/(2piX) $ ora, poiché il raggio esterno ...

tkomega
In figura è rappresentato una circonferenza di spessore trascurabile, di massa pari a m = 1 kg e di raggio pari a R = 50 cm di materiale non conduttore. In due punti diametralmente opposti sono fissate due cariche (q1 = 10 nC e q2 = −10 nC). All’instante t = 0 s la posizione della carica positiva e tale da formare un angolo α rispetto al centro della circonferenza di $alpha = 45° $. Il sistema è immerso in un campo elettrico uniforme orientato come in figura di intensità E = 1 V /m. ...

tkomega
Un elettrone è abbandonato in quiete in un campo elettrico uniforme, di modulo $E = 2 × 10^6 V/m$, che lo accelera per una distanza $h= 0.5 cm$. Calcolare l’energia cinetica acquistata dall’elettrone. Risolvo il problema così: poiché l'elettrone si trova in un campo elettrico uniforme si muoverà di moto rettilineo uniformemente accelerato, per cui : $ 1/2 at^2 = h= 0.005 m <=> t= sqrt((0.01 m )/(a)) $ dove $a$ è possibile essere ricavata dalla relazione: $ ma=eE <=> a=(eE)/(m) $ quindi risostituendo in ...

giantmath
Alla base di un recipiente cilindrico aperto contenente un fluido ideale, viene praticato un foro la cui sezione è l’1% di quella del recipiente. Se l’altezza del fluido è 1 m, calcolare il tempo necessario per lo svuotamento del recipiente. Si supponga che la velocità sia massima all’istante t = 0. Il rapporto del quadrato delle due superfici è 10−4 . io ho scritto l'equazione di continuità: $ Sv=S_fv_f $ in cui f indica il foro da cui $ v_f=100v $ e Bernoulli: ...

tkomega
Determinare l’intensità della corrente che scorre nella resistenza da 100 Ω del circuito in figura. Scusate se posto alcune domande come questa e l'altra domanda che ho scritto sempre riguardo un circuito ma in alcuni casi come i circuiti faccio un po di fatica

tkomega
Determinare l’intensità della corrente che scorre nella resistenza da 100 Ω del circuito in figura.

Dr.Hermann
Ciao a tutti. Sono alle prese con un esercizio sulla completezza degli spazi di Hilbert. Sono agli inizi per quanto riguarda lo svolgimento di tali esercizi e non sono ancora molto pratico. Tuttavia ho un esercizio che non riesco ad impostare e mi chiedevo se potevate darmi cortesemente una mano. Lo spazio $H={f:\int_{0}^{1} x\abs{f(x)}^2 dx <+\infty}$ dotato di prodotto scalare: $(f,g):= \int_{0}^{1} x \bar{f(x)}g(x) dx}$, risulta uno spazio di Hilbert. Verificare la sua completezza. Mostrare inoltre che $L^2(0,1)\subset H$ e che quindi esistono ...
3
22 dic 2023, 12:54