Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Mr.Mazzarr
Ragazzi, ho fatto questo esercizio ma non sono sicuro affatto del procedimento. Ho bisogno del vostro aiuto, potreste dirmi se è corretto? Il testo cita: '' Data la retta $r$ e il punto $P$, determinare i coseni direttori di $r$, che è orientata in modo da formare un angolo acuto con l'asse y ''. $r : {(x - y + z - 3 = 0),(2x + 2y - 2z + 1 = 0):}$ $P = (1, 0, 1)$ Ora, io agito così.. Ho calcolato i numeri direttori di r, ovvero le coordinate del vettore parallelo alla retta. Mi ...

Claudia.S1
Buongiorno a tutti!Ho bisogno di nuovo del vostro aiuto! (2 post in 2 giorni! abbiate pietà di me ma martedì ho l'esame e sto andando nel panico! ) Ho questa applicazione lineare: $\phi$ ($((a,b),(c,d))$)=$((-d,b),(c,-b))$ e ne devo trovarne gli autovalori...Non essendomi mai imbattuta in un esercizio simile ho provato a fare un tentativo per risolverlo,però non sono per niente sicura di averlo svolto correttamente...potreste controllare se è corretto o se ho fatto qualcosa di ...

jellybean22
Buona sera a tutti, mi è venuto un piccolo dubbio: supponiamo di avere un gruppo G e per ipotesi di avere un sottogruppo normale. Supponiamo inoltre che codesto sottogruppo sia in particolare un p-Sylow, con p fissato; sia P. Alla luce del secondo Teorema di Sylow so che il numero di p-Sylow è dato da $n_p=|G|/|N(P)|$ dove $N(P)$ è il normalizzante di un qualsiasi p-sylow (io scelgo P). Ma il normalizzante di $P$ è tutto $G$, allora $n_p=1$. ...

Be_CiccioMsn
Salve ho un piccolo problema da proporre: Su di un piatto metallico, il cui centro coincide con l'origine degli assi, la temperatura nel punto (x; y) è governata dalla legge $T(x; y) = x^2 + 2y^2 - x$: Una formica si muove a partire dal centro del piatto, spostandosi ad una distanza massima di una unità dal centro stesso. Quali sono la temperatura massima e minima che la formica eventualmente percepirà? Io andrei a calcolare la derivata direzionale che risulterà essere $(dT)/(ds)= (2x-1)cos\theta +4ysen\theta$, ora io ...

mark36
ciao mi trovo in difficolta' con il seguente problema: Determinare l'area della parte limitata di piano individuata dal grafico [tex]y=-\frac{1}{3} (x+6)^3[/tex] e dalla retta di equazione [tex]y=-2x-12[/tex] come si risolve???? ho provato a mettere le duee funzioni in sistema per fare le intersezioni ma mi vengono numeri strani.Grazie
14
5 lug 2013, 15:39

Mr.Mazzarr
Ho due rette, $r$ e $s$. Ho le equazioni parametriche e cartesiane di entrambe le rette. Ho i valori di due punti appartenenti ad $r$ e di un punto appartenente a $s$. Devo calcolare l'equazione del piano $beta$ che contiene entrambe le rette. Due rette sono complanari quando il determinante della matrice A è 0. La matrice A è la matrice le cui righe sono le equazioni cartesiane delle due rette. Basta questo per sapere che ...

TRAPPOLAJ
Interesse semplice Miglior risposta
Calcola il capitale che produce l'interesse di: €236,25 al 10,50% in 10 mesi (€2.700,00) :puzzled :sarcasticclap :sarcasticclap :sbadigl :sbav2 :sbonk :sleep :signorsi :sigh :sherlock :shrug :scratch :sobad :smoke :spaccio :specchio :stars :stayinalive :verysad :uhm :u_u :teach :surprise :stopit :victory :wall :wc :whistle :windows :witch :xmas :XD :wow :worry :woot :workinprogress :yawn :zitto :zomp :anal :sega
1
5 lug 2013, 17:49

marthy_92
Salve a tutti. Ho trovato una richiesta in questo esercizio che non ho saputo risolvere. Sono assegnati i seguenti sottospazi di R4 U = { ( x,y,z,t) \( \in \) R4 : x - z + t = y + z - t = 0 } W = { ( x,y,z,t) \( \in \) R4 : x + y = 0 } Dimostrare che U \( \subset \) W \( \subset \) R4. Dovrei prendere un vettore di R4 e far vedere che non sta in W ? E poi prendere un vettore di W e far vedere che non sta in U ? Inoltre devo prendere pure un vettore di U e far vedere che sta in ...

TRAPPOLAJ
Un commerciante acquista una partita di merce e ottiene di pagare il 60% del suo valore e cioè €18.000 all'atto dell'acquisto e la parte rimanente fra 18 mesi. Quanto dovrà pagare alla scadenza stabilita ,se gli sarà conteggiato l'interesse del 10%? (€13.800) :hi
1
5 lug 2013, 18:30

marcus1121
$1)$ Data la funzione $y=(sinx/(1+tan^2x))$ Quale di queste due affermazioni secondo voi va meglio? $A$ $1+tan^2x!=0$ per ogni $x!=90°+k180°$ $B$ nel dominio di appartenenza di $tanx$, $1+tan^2x!=0$ per ogni $x inRR$ Secondo me vanno bene entrambe…cambia solo la forma. $2)$ Data la disequazione $cosx>0$ quale di queste due affermazione va meglio? $A$ La soluzione è data da ...
10
28 giu 2013, 16:10

archimede91
Stabilire che l'equazione $e^(3x-2y^2)-cos^2(x+y)=0$ definisce implicitamente una funzione x = f(y) in un intorno del punto (0;0). Successivamente determinare la formula di Taylor per f(y) fi no al terzo ordine... ho dei problemi con questo esercizio, in quanto al primo ordine non mi viene niente , ovvero mi viene x= o(y) , può essere? grazie in anticipo

jellybean22
Salve a tutti, ho un dubbio che non riesco proprio a risolvere. Passo subito al dunque: Mi trovo nel gruppo simmetrico $S_5$, vorrei calcolare il numero degli elementi del tipo $(ab)(cde)$. Comincio innanzitutto col dire che per $(ab)$ ho 10 possibilità, applicando la formula $1/r*n*(n-1)*....*(n-r+1)$. Considero i $(cde)$ siccome due elementi li ho già utilizzati allora me ne restano solo 3. Quindi ho due possibilità. Calcolando il totale avrei allora ...

smartmouse
Salve, ho fatto questo esercizio di RO: Ebbene graficamente ottengo un poliedro chiuso (politopo) e il punto di ottimo coincide con uno dei lati del politopo. Quindi ho infiniti punti di ottimo, giusto? Successivamente ho calcolato i punti estremi (i vertici del politopo) e non le direzioni perché in questo caso non vanno calcolate, è corretto? Poi ho applicato il teorema della rappresentazione, parzialmente, ovvero senza la seconda sommatoria, dal momento che le direzioni non esistono. Alla ...

francicko
Salve, volevo un parere sull' esattezza o meno delle seguenti considerazioni: sia $|q|<1$, e considero il seguente prodotto $(1+q+q^2+....q^n)(1-q)$ sviluppando ottengo $1-q^(n+1)$ e per $n$ tendente ad infinito essendo che $|q|<1$ il valore del limite di questo prodotto sarà evidentemente $1$; idem se ho $(1-q+q^2-q^3+...q^n)(1+q)$ sempre con $|q|<1$; ora sempre con $|q|<1$, se considero il seguente prodotto $(1+2q+3q^2+4q^3+....+(n+1)q^n)(1-q)^2$ ...
4
3 lug 2013, 20:39

matematicus95
Ho i seguenti quesiti: 1 se la funzione prodotto $p(x)=f(x)g(x)$ha limite per $xtoc$, allora anche fx e gx ammettono limite per x tendente a c 2se la funzione somma $s(x)=f(x)+g(x)$ ha limite per $xtoc$ allora anche fx e gx ammettono limite per x tendente a c 3 la funzione prodotto px ammette limite per x tendente a c solo se fx e gx ammettono limite per x tendente a c. Devo rispondere se sono veri o falsi. Io penso che sono tutti e tre veri poiché i teoremi si ...

mavgst
$ log (x^2 + y^2 + z^2)/(√(1-x^2-y^2)) $ Salve a tutti sono nuovo, non so se ho postato nel posto giusto ma vi chiedo aiuto perche sono abbastanza disperato... potete aiutarmi con la risoluzione?? Grazie in anticipo.. vorrei sapere il risultato della derivazione rispetto a x... vi spiego il mio dubbio: non so se nella seconda parte della derivazione devo derivare la funzione $ √1-x^2-y^2 $ oppure $ 1/(√1-x^2-y^2) $ Grazie in anticipo...
7
6 lug 2013, 18:48

Riccardo Desimini
Sia \( f(x) = e^{-ax} \), \( a > 0 \). Allora la trasformata di Fourier di \( f \) è \[ F(\xi) = \sqrt{\frac{\pi}{a}} e^{-\frac{\pi^2}{a} \xi^2} \] Ho trovato nelle dispense della mia docente il calcolo della trasformata di Laplace di \( g(x) = \frac{\cos \sqrt{x}}{\sqrt{x}} \text{sca}\, (x) \), dove \( \text{sca}\, (x) \) è la funzione che vale \( 1 \) per \( x \ge 0 \), \( 0 \) altrimenti. In questo calcolo viene utilizzata la formula che ho scritto sopra, ponendo \( a = s \in \mathbb{C} \). ...

ADP87
ciao raga..potreste spiegarmi una cosa? ho questa equazione differenziale del secondo ordine non omogenea, $ y''+4y=4cos(2x) $ risolvendo il polinomio associato ottengo soluzioni complesse $ +- 2i $ e ho capito che la soluzione generale è $ y(x)= C1cos(2x)+C2sin(2x) + bar(y) $ a questo punto non capisco perchè a volte la soluzione particolare è $ bar(y) = x(Acos(2x)+Bsin(2x)) $ mentre altre volte è solamente $ bar(y) = Acos(2x)+Bsin(2x) $ da cosa lo capisco? su questo pdf parla di molteplicità..potete aiutarmi a capire? ...
4
6 lug 2013, 19:32

malgracio
Buongiorno a tutti, ho qualche dubbio in merito alle modalità con cui si ricavano le costanti di equivalenza tra norme e come la disuguaglianza può essere calata nella realtà degli esecizi. Sono a conoscenza del fatto che: $c* ||v||_q$ $<=$ $||v||_p$ $<=$ $C* ||v||_q$ e che, ad esempio a questo link (http://tinyurl.com/3z8lt84) posso trovare una paricissima tabella per ricavare i valori di $c$ e $C$ in base allo dimensione di ...

Khjacchia97
Ciao a tutti... Pur avendoci provato almeno 200 volte, non riesco a risolvere questi due problemi: 1- "In una circonferenza di diametro AC=2r, conduci la corda AB congruente al lato del triangolo equilatero inscritto e, da parte opposta di AB rispetto ad AC, una corda AD; sia AH l'altezza del triangolo ABD. Determina la misura della corda AD in modo che sia verificata la relazione: $ AB^2 + 2AD^2- 3AH^2 = 66/25 r^2 $ (ris. AD= 6/5 r Dunque, in questo non ho capito nemmeno come fare il disegno, perchè parla ...
6
6 lug 2013, 11:57