Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
agadir92
In quanti modi 4 persone possono occupare 3 auto aventi 4 posti ciascuna? supposto che: a)Sia le auto che le persone sono distinguibili e ogni auto deve contenere almeno 1 persona. b)sia le persone che le auto sono indistinguibili e sono ammesse auto vuote. Allora per la a) Ho un insieme di 4 persone distinti {A,B,C,D} e li devo disporre su 3 auto con 4 posti ciascuna {E,F,G} Se in un auto dispongo 2 persone (scelte tra le 4 ), nell altra ne posso disporre 1 scelte dalle restanti 2 e nell ...

roxy.lella
Salve a tutti! Mi sto preparando per l'esame di analisi 1.. Sto avendo un po' di problemi a svolgere questo esercizio. Vi posto l'esercizio: "calcolare gli autovalori della seguente matrice: $ ( ( -3 , -1 ),( 37 , -4 ) ) $ " Io ho proceduto così: dato che il determinante di $ (A-lambda I) $ deve essere nullo, mi viene: $ (-3-lambda )(-4-lambda )+37=0 $ $ 12+3lambda +4lambda +lambda^2+37=0 $ $ lambda^2+7lambda +49=0 $ Il risultato finale dovrebbe venire $ lambda=-7 $ ma non so perchè non mi trovo Dov'è che sbaglio?

lory91y
Ciao ragazzi mi serviva un aiuto per questo esercizio di algebra lineare: Nello spazio vettoriale \(\displaystyle R_4 \) si consideri il sottoinsieme \(\displaystyle E = {(2r+s+t+2u,r-s+5t-5u,s-3t+4u,r+2t-u) | r,s,t,u ∈ R} \) (a) Dopo aver stabilito che \(\displaystyle E \) è un sottospazio di \(\displaystyle R_4 \), se ne trovi una base (b) Trovare due sottospazi \(\displaystyle F,G \) di \(\displaystyle R_4 \) in maniera che \(\displaystyle E + F = E + G = R_4 \) , dove la prima somma è ...
3
2 set 2013, 19:32

insule23
salve avrei bisogno di aiuto con lo studio della convergenza della serie: [math]\sum_{n=1}^{\infty } sin(n!)2^{-n^2-log(n)+cos (n)}[/math] grazie
7
3 set 2013, 09:03

Elrien
Scusate ho bisogno di aiuto per questo esercizio sulla probabilità, è più forte di me non riesco a capirci niente In un urna ci sono 30 palline di cui 10 rosse, 7 nere, 4 viola e le restanti gialle a) Qual'è la probabilità che su 6 estrazioni con reinserimento si ottengano tutte palline nere? b) Qual'è la probabilità che su 6 estrazioni con reinserimento non si ottenga alcuna pallina nera? c) " " si ottenga ...
6
3 set 2013, 23:00

simos93
Trovare, se esiste, un sottospazio vettoriale di $RR^3$ di dimensione 2 f-invariante, dove $f:RR^3 \to RR^3$ e $f(x,y,z)=(y,z,x)$ $AAx,y,zinRR$ Facendo un po' di calcoli ho trovato che la matrice che rappresenta f nella base canonica è $((0, 1, 0), (0, 0, 1), (1, 0, 0))$. Studiando la diagonalizzabilità di questa matrice ho trovato che non è diagonalizzabile, ma che ha 1 come autovalore, il cui autospazio ha dimensione 1. Ma questo non basta poichè mi occorre un sottospazio di dimensione 2. ...
1
3 set 2013, 23:56

Mr.Mazzarr
Probabilmente mi perdo in un bicchier d'acqua, ma mi manca l'ultimo passaggio di un integrale da calcolare con la formula della sostituzione: $int 1/(x^2*sqrt(x^2+1)) * dx$ Sostituisco: $sqrt(x^2+1) = t$ $x = sqrt(t^2-1)$ $dx = t/(sqrt(t^2-1))$ Quindi: $int 1/(t^2-1) * 1/(sqrt(t^2-1)) * dt$ E non so più come andare avanti. Ho provato un'altra sostituzione ma non porta a nulla di buono. Come potrei proseguire?

21zuclo
Ciao a tutti, stavo facendo questo esercizio, ma arrivo ad un punto dove ho un dubbio. Aiutatemi per favore. Grazie in anticipo. Se voi avreste agito in maniera diversa e più veloce, scrivetelo pure Determinare una base ortonormale di $RR^3$ costituita da autovettori della seguente matrice $ A=( ( 2 , 1 , 1 ),( 1 , 2 , 1 ),( 1 , 1 , 2 ) ) $ ho provato a svolgere così mi calcolo gli autovalori col solito metodo (ometto i calcoli, è un po' lungo) che sono $ \lambda_(1,2)=1 \vee \lambda_3=4 $ la molteplicità algebrica è 2 per ...
7
3 set 2013, 21:16

luciavirgi1
Salve, ho delle difficoltà nella risoluzione di questo esercizio. Mi spiego, una volta trovata $F$, sono in grado di determinare una base di $ker(f)$ e una di $Im(f)$. Il problema è che non saprei come dimostrare il primo punto dell'esercizio. Si considerino le applicazioni $F_1, F_2, F_3 : M_2(RR) -> M_2(RR)$ tali che $F_1(A) = A^t * A, F_2(A) = A + A^t, F_3(A) = A + I_2$ per ogni $A in M_2(RR)$. Dimostrare che una sola di esse è lineare; detta $F$ tale applicazione, determinare una base di ...

Francesco931
Premessa: mi sto preparando per i test di medicina e sto svolgendo alcuni esercizi. A questo proposito vorrei anche sapere perchè le simulazioni di matematicamente.it di medicina non partono: soltanto quelle di architettura e di veterinaria funzionano correttamente. Ad ogni modo avrei qualche esercizietto da proporvi ( e non saranno gli unici), che sembrano facili a parte il fatto che non si trovano. 1)Trasformare la seguente equazione in modo da esprimere x in funzione di y dato che tutte le ...
7
27 ago 2013, 09:39

luciavirgi1
Siano assegnate $f(x,y)=(x+2y,−x−y),g(1,1)=(−1,0),g(1,−1)=(0,1)$. Determinare la matrice di $(fog)$ rispetto alla base canonica di $RR^2$ e determinare $(fog)^-1(1,1)$. Ho calcolato $(fog)=((1/2,-3/2),(0,1))$ grazie all'aiuto preziosissimo di un utente di questo forum, ma ora non so come calcolare $(fog)^-1(1,1)$. Se qualcuno potesse indicarmi un metodo di risoluzione ve ne sarei grato.

debora.pietracito
Ciao ho una veloce domanda su questo esercizio : Calcolare il volume del solido generato dalla una rotazione completa intorno all'asse x del grafico della funzione $ y=((1+e^x+e^(2x))+1)/2 $ con $ x in (0; ln 10) $ so che devo applicare la formula $ V= piint_(a)^(b) (f(x))^2 dx $ ma in questo caso visto $ x in (0; ln 10) $ cioè visto che l'insieme non è chiuso e limitato che considerazioni devo fare prima di risolvere l'esercizio?

Elrien
Buonasera a tutti! Premetto che sicuramente l'esercizio è una cavolata ma non avendo mai fatto statistica e trovandomi a dover dare un esame da "autodidatta" ho incontrato delle difficoltà...mi potreste aiutare per cortesia? In una classe di studenti delle scuole medie superiori ci sono 15 maggiorenni e 13 minorenni. a) Qual'è la probabilità che su 11 estrazioni con reinserimento si ottengano 7 maggiorenni? b) Qual'è la probabilità che su 2 estrazioni senza reinserimento si ottengano ...
10
1 set 2013, 20:34

federik21
Salve! ho il seguente esercizio: Trovare una base per E intersecato F, entrambi sottospazi vettoriali. E= F= Non riesco a capire come svolfgere l'esercizio per via delle trasposte. Se non vado errato, con Gassman dovrei avere dim(EnF)=2 Grazie mille.

giaomo1
Dimostrare p↔q significa esibire 2 dimostrazioni : p→q e q→p da cui si evince che p , q sono equiveridiche (equivalenti) ? Sia, proposizione p = A è sottoinsieme di B proposizione q = ogni elemento di A è elemento di B Definizione : A è sottoinsieme di B sse ogni elemento di A è elemento di B, in simboli p↔q , si scrive anche così : q→p e (not q→not p) ? Se in un esercizio (vale) p↔q e mi si chiede di verificare p basta dimostrare la proposizione q ? 2) Posso dire che la definizione di ...

carulu
Non riesco cosa debba fare con t>0 e t
5
1 set 2013, 16:40

tripolimarco
Ciao, ho un problema nel comprendere le rendite nel caso in cui vengano adottati tassi e regimi differenti. Vi porto un esempio con soluzione così da permettervi di spiegare concretamente e chiarire i miei dubbi. Una rendita prevede 3 versamenti annui posticipati di 1500 euro e, a partire dal primo anno successivo all'ultimo versamento, ulteriori 4 versamenti semestrali di 700 euro. Determinare il valore attuale di tale rendita, sapendo che per i primi 3 anni vige il regime dell'interesse ...

Nick_931
Buongiorno =) ho un problema con l'operatore di derivata nel momento in cui cerco di applicare il principio di hamilton. Il caso che sto considerando è quello di un sistema con infiniti gradi di libertà, cioè la corda vibrante, da trattare con il formalismo lagrangiano. Ho la seguente Lagrangiana che descrive il moto $$\mathcal{L}[y]=\frac{1}{2}\int_{t_0}^{t} \left[\mu (\frac{\partial y}{\partial t})^2- \tau (\frac{\partial y}{\partial x})^2\right] \, dx$$ cioè ...
4
31 ago 2013, 12:42

liuc-votailprof
Buongiorno, complimenti per il forum, davvero bello. Vi espongo il mio problema: dovrei inserire in un cerchio una serie di cerchi, non sormontabili, con diametri differenti. Esiste una qualche funzione (anche con Matlab)che minimizza il diametro del cerchio esterno? Grazie mille

Cicciafen
Devo calcolare il periodo di questa funzione $ y=2sen^2x -senx -1 $ Ho impostato l'equazione $ 2sen^2x -senx - 1= 2sen^2(x+T) -sen(x+T) -1 $ --> $ 2sen^2x -senx= 2sen^2(x+T) -sen(x+T) $ però poi non so come procedere perchè non riesco ad arrivare a un equazione elementare come $ senα=senβ $ e simili...
1
3 set 2013, 15:15