Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Ho tre punti che identificano un piano ideale nello spazio. Tramite una rilevazione ottica prelevo gli stessi tre punti nel mondo reale e vorrei rilevare le differenze tra i due.
Mi aspetto di trovare una traslazione ed una rotazione tra un piano e l'altro e pensavo di rilevarla tramite le normali dei due piani. Come devo impostare il calcolo matematico?
Utilizzo un software grafico che implementa librerie di gestione dei vettori, matrici 3x3, matrici omogenee ecc...
Ho un terribile dubbio che non riesco a colmare: se ho una divisione di una misura con errore $k$ e un valore senza errore, l'errore del risultato è l'errore di $k$?
*mi riferisco all'errore assoluto
Grazie in anticipo
dovendo studiare $ f(x)=ln(e^(2x)-4e^x+4) $ quando arrivo a dover cercare eventuali asintoti obliqui e svolgere quindi $ lim_(x -> +oo) f(x)/x = lim_(x ->+oo) ln(e^(2x)-4e^x+4)/x $ verrebbe naturale dire che essendo x un infinito di ordine maggiore del logaritmo il limite è 0.
Tuttavia svolgendo $ lim_(x ->+oo) ln(e^(2x)-4e^x+4)/x = lim_(x ->+oo) (2x + ln(1-4e^-x + e^(-2x)))/x = 2 $
Qual è quello giusto? e come capire quando si hanno due alternative così che sembrano entrambe giuste qual è quella effettivamente giusta?
"Calcolare l'integrale $ int int_(A)sqrt(xy)/(x^2+y^2) dx dy $ dove $ A={(x,y)inR^2:(x-1)^2+(y-1)^2<=1} $ "
Sono passato in coordinate polari $ x=rho*cos(theta) $ , $ y=rho*sin(theta) $ , con $ 0<=theta<=2pi $ e $ 0<=rho<=2 $ , trattandosi il dominio del cerchio centrato in $ (1,1) $ di raggio unitario.
$ int_(0)^(2pi)d theta int_(0)^(2) sqrt(rho^2cos(theta)sin(theta))/rho^2 *rho*drho $
da cui
$ int_(0)^(2pi)d theta int_(0)^(2) sqrt(cos(theta)sin(theta))*drho $
poi
$ 2int_(0)^(2pi)d theta sqrt(cos(theta)sin(theta)) $
infine
$ 1/2int_(0)^(2pi)d theta sqrt(sin(2theta) $
Ho commesso errori? Non riesco più ad andare avanti con questa integrazione che mi è venuta...
Buonasera, avrei un piccolo problema non riesco a capire perché se ho "n" forze complanari applicate rispetto ad un punto qualsiasi il momento risultante è perpendicolare alla risultante delle forze.
Grazie mille in anticipo
Salve a tutti, ho da poco iniziato a fare esercizi sui moti relativi, vi propongo un quesito e la soluzione, avrei bisogno di capire come ci si arriva, grazie mille.
Quesito:
Un punto materiale $P$ descrive, lungo l'asse x di un sistema di riferimento inerziale con origine $O$, un moto di equazione $x = x_1sen\omegat$.
Consideriamo un secondo sistema di riferimento, con gli assi paralleli e concordi a quelli del primo, in movimento rispetto a questo in modo tale che ...
Allora, partendo dalla definizione: "Siano T e G un insieme di formule ed una formula. Diciamo che G è conseguenza logica di T se ogni interpretazione che soddisfa ogni formula di T soddisfa anche G".
Devo fare un paio di esercizi. Esempio:
(a) F,G ⊨ F ∧ G
Come io lo risolverei.
Allora, le due formule F e G sono soddisfatte entrambe quando v(F) = V e v(G) = V.
Ora, con v(F) = V e v(G) = V il valore di (F ∧ G) = V
Quindi direi che è gisuto: F ∧ G è conseguenza logica di F,G.
E' così che si ...
ciao
qualora, dato un prodotto vettoriale del tipo:
$(P-O)\wedge\vec{v}= vec{c}$
dunque avente come risultato il vettore $\vec{c}$ che risulta un vettore costante rispetto a modulo, direzione e verso, come mai che i due vettori $(P-O)$ e $\vec{v}$, mediante tale prodotto vettoriale, individuano un piano $\alpha$ la cui giacitura è costante? Ho provato a cercare la definizione di giacitura di un piano, ma non mi è molto chiara..
Questa è una domanda derivata da un altro esercizio per cui ho aperto un post oggi pomeriggio, ma dato che sono stato aiutato a risolverlo ed avendo maturato un altro dubbio, ho pensato di aprire un altro thread. Se non va bene dite pure che aggiorno l'altro.
Dato $tan^2(x(senhx-x))$
si ha che $\senh x = x + \frac{x^3}{6} + o(x^3)$
quindi $\senh x - x = \frac{x^3}{6} + o(x^3)$
moltiplicando per x $x(\senh x - x) = \frac{x^4}{6} + o(x^4)$
per la tangente si ha che $\tan t = t + \frac{t^3}{3} + o(t^3)$
ora però sul mio esercizio risolto si arriva a scrivere ...
Ciao, amici! Sia $f\in L_1[a,b]$ una funzione integrabile alla Lebesgue su $[a,b]\subset \mathbb{R}$ e sia \[F(x)=\int_{[a,x]}fd\mu\]la sua funzione integrale per $x\in[a,b]$. So che $F$ è assolutamente continua su $[a,b]$ e quindi derivabile quasi ovunque. Leggo che $F$, $F'=f$ quasi ovunque. Come si può dimostrare?
So anche che, se una funzione $g:[a,b]\to\mathbb{C}$ è assolutamente continua, la sua derivata, che esiste quasi ovunque, è ...
Ciao, amici! Il Kolmogorov-Fomin dimostra i due seguenti teoremi dicendo che valgono per domini di misura fissa definita su una $\sigma$-algebra:"A.N. Kolmogorov e S.V. Fomin, Elementi di teoria delle funzioni e di analisi funzionale":172wiq06:Una funzione $f(x)$ definita su un insieme misurabile $E$, ed equivalente su questo a una funzione misurabile $g(x)$, è anch'essa misurabile."A.N. Kolmogorov e S.V. Fomin, ...
Salve a tutti,
sono alle prese con un esercizio del Rudin: ( Real and complex analysis )
"Does there exist an infinite $\sigma$-algebra which has only countably many members?"
Che io ho tradotto così:
"Esiste una $\sigma$-algebra infinita che possiede solamente insiemi numerabili?"
E ho detto, mah, , sì, perché abbiamo l'insieme delle parti di $NN$. Ho pensato quindi che ho sbagliato a tradurre, infatti in rete ho trovato questo esercizio:
"Esiste una ...
Salve a tutti ragazzi, vi vorrei proporre dei punti di esercizi che mi stanno dando un po' di noia
"Considera la funzione $y=2^((x-2)/(x^2+x+a))$ e determina il parametro a in modo che $x=2$ sia una singolarità eliminabile."
b) "Data la funzione $y=(x^2+ax-1)/(x-2)$ determina il parametro a in modo che $x=2$ sia una singolarità di seconda specie."
"Determina il parametro a in modo che la funzione $y=(x^2+ax-3)/(x+4)$ abbia in $x=-4$ una singolarità eliminabile."
Ho ...
Ciao, amici! Sono interessato al rapporto c'è tra il fatto che uno spazio vettoriale $V$, reale o complesso, sia somma diretta di sue varietà lineari (nel senso di sottospazi vettoriali, non necessariamente chiusi* e il fatto che tale varietà lineare sia autospazio di un certo operatore lineare.
In particolare, data una proiezione $P:V\to V$, un operatore lineare tale cioè che $P^2=P$, so che $V= P V\oplus (I-P) V$, quindi \(\forall x\in P V\quad Px=x\) e \(\forall ...
Mi sono imbattuto poco fa in un problema abbastanza semplice di Fisica, i testo recita:
Sia dato un corpo costituito da una sbarra omogenea di sezione trascurabile
(densità lineica λ=1 kg/m) sagomata in modo da formare un triangolo
equilatero di lato l =25 cm. Il triangolo sia sospeso in uno dei vertici ad un
asse orizzontale intorno al quale possa ruotare senza attrito.
a) Calcolare il periodo delle piccole oscillazioni.
b) Supponendo che il triangolo occupi una posizione iniziale tale che ...
salve avrei qualche difficolta con questo problema:
Due sferette uguali aventi la medesima carica di massa pari a 10 g sono sospese ad uno stesso punto mediante un filo inestensibile di lunghezza pari a 70 cm. Le sferette si trovano in equilibrio quando sono separate da una distanza di 10 cm l'una dall'altra.
Si stabilisca il comune valore della carica delle sferette.
Allora iniziamo col dire che su ciascuna massa agiscono tre forze:
la forza peso [math]\vec{P}[/math], la tensione del ...
L'area del trapezio ABCD é 2304 cm2,la base maggiore misura 84 cm,e l'altezza é gli 8/21 dellas base maggiore. Sapendo che E ed F sono i punti medi dei lati AB ed DC,calcola la misura del contorno della parte colorata.
Non so come si risolve. Potreste indicarmi come fare?
Grazie
Alberto, Bruno, Cesare e Dario, tutti mancanti di una gamba, devono raggiungere in fretta un posto ma hanno una sola protesi a disposizione che possono scambiarsi tra loro. Decidono di procedere a coppie: chi indossa la gamba sorregge un altro verso la meta, raggiunta la quale uno dei due tornerà al punto di partenza per permettere ad un'altra coppia di partire, infine uno dei tre arrivati tornerà indietro per recuperare l'ultimo rimasto.
Alberto, malgrado la menomazione, cammina molto spedito ...
Salve a tutti, vi espongo il problema:
Una slitta di massa $M=75kg$ e lunga $L=5 m$, vedi figura 1, è inizialmente ferma su un lago ghiacciato. la massa $m= 15 kg$ è appoggiata ad una molla, collegata con l'altra estremità alla slitta., di costante elastica $k=500 N/m$ e lunghezza a riposo $l_0=50 cm$, tenuta compressa di un tratto $\Deltax_0=20 cm$ da una fune sottile. All'estremità opposta della slitta è presente una parete verticale con dello stucco. In ...
Qual'è in generale l'utilità delle basi ortogonali/ortonormali ?
Mi sembra siano usate anche nella compressione dei file *.jpg giusto ?
grazie a tutti