Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Lolaanzhnj
Salve ragazzi, vorrei chiedervi come poter calcolare la somma di questa progressione geometrica: $ (1+i)+(1+i)^2+(1+i)^3+(1+i)^4+(1+i)^5+...+(1+i)^n $ i è un numero compreso tra 0 e 1. Il punto è questo: questo tipo di somma viene fuori quando si vuole valutare l'interesse composto e teoricamente la somma sopra dovrebbe risultare in (1+i)^n, però non riesco a scriverlo in questa forma... Grazie mille
3
14 ago 2018, 13:13

eugeniocotardo
Ciao a tutti, ho un problema che si sta ripresentando spesso nella risoluzione delle equazioni differenziali (soprattutto di quelle a variabili separabili, almeno finora). So come svolgerle (almeno finora! ), ma qualcosa alla fine non mi torna. Ad esempio, ho la seguente equazione: $y'=\frac{2xy}{x^2-1}$ Riesco a proseguire coi calcoli e ad integrare ambo i membri in $dx$ e $dy$, cioé: $\intdy/y = int\frac{2x}{x^2-1} dx$ che equivalgono a $lny = ln(x^2-1) + c$ Qui inizia il mio dubbio: ...

Matilda^14
Ciao a tutti! Scusate la domanda forse banale, ma come faccio a capire "ad occhio" quando una funzione è derivabile in tutto l'intervallo? Riesco a trovare la derivata nel punto calcolando il limite del rapporto incrementale, ma qual è un metodo rapido per dire che è derivabile in tutti i punti? Devo forse calcolare la derivata con le regole di derivazione e calcolarne poi il dominio? Ad esempio come faccio a dire che f(x)=|x| non è derivabile in 0? Come si calcola questa derivata? (Ho capito ...
1
16 ago 2018, 08:02

giovx24
salve, ho un dubbio sul teorema di de l'hopital, ad esempio ho una funzione $f(x)/g(x)$ e devo calcolarne il limite per $x -> +infty$ , supponendo che la funzioni rispetti tutte le ipotesi del teorema applico de l'hopital e ottengo la funzione $(d(f(x)))/(d(g(x)))$, ne calcolo il limite e ottengo $+infty$ la domanda è $(d(f(x)))/(d(g(x)))$ è un'equivalenza asintotica di $f(x)/g(x)$ per $x -> +infty$ ? oppure il risultato del limite è uguale ma le due funzioni tendono ...
2
15 ago 2018, 17:11

vincenzoj
(x == 2 || x-- == -1 && !(y - x) >= 0) && ((y > x-- ? x : y--) == y < x) [1] y=1; x=3 [2] y=0; x=2 [3] y=1; x=2 Risposta : [3] Io ho : 2==2 vero Valuto quindi : && ((y > x-- ? x : y--) == y < x) 1>2 falso, quindi ho y-- (y--)==y
7
15 ago 2018, 18:02

caffeinaplus
Salve a tutti, sto risolvendo questo problema ma mi blocco sull'ultima parte, ovvero Il filo conduttore di figura piegato a U ha una distanza tra i fili $2a = 7. 0$ cm ed è percorso dalla corrente $i= 2. 9 A$. Calcolare il campo magnetico $B$ nel punto $C$ Io ho ragionato in questo modo: Ho considerato una circonferenza di raggio $a$ e centro in $C$. Utilizzando Laplace e la ...

frollo1
Ciao a tutti, ho provato a risolvere questo limite con De L'Hopital...si può fare? $lim_(x->pi/3) (x-pi/3)/(1-cos(x-pi/3))$ $f'(x)= 1$ $g'(x)= -sinx(x-pi/3)$ $lim_(x->pi/3) 1/-sin(x-pi/3))=1/0= oo $
4
14 ago 2018, 12:33

TS778LB
Dato il vettore posizione $ \vecr(t)=r\hatr $ Il vettore velocità è definito come $\vecv(t)= \frac{d\vecr(t)}{dt}=\frac{dr}{dt}\hatr+r\frac{d\hatr}{dt $ Per dimostrare che il vettore velocità è puramente tangente alla traiettoria posso ammettere che al limite $ \Deltat->0 $ i vettori $ \vecr(t) $ e $ \vecr(t+dt) $ (con punto di applicazione rappresentato dall'origine del riferimento) tenderanno ad avere stesso punto di arrivo e quindi in definitiva stesso modulo ($\frac{dr}{dt}\hatr=0$)?

Broderk
Ciao a tutti, non riesco a calcolare l'allungamento massimo della molla in questo es: Due corpi con masse m1=12 kg e m2=4Kg sono collegati da un filo come in figura (vi è un piano inclinato sull'potenusa vi è m1 fermata da un blocchetto, m1 collegata da una fune mediante una carrucola a m2 la quale è collegata a terra da una molla). Il piano è liscio e l'angolo di inclinazione è $ theta $ =30°. il corpo m2 è anche fissato al suolo da una molla ideale di costante elastica k=550n/m e ...

Lèo114
Sia \(\displaystyle H \) il sottogruppo generato da \(\displaystyle a,b\in G \). Mostrare che se \(\displaystyle ab=ba \), allora \(\displaystyle H \) è abeliano. Si ha \(\displaystyle \forall x,y\in H \) che \(\displaystyle x=ar+bs \) e \(\displaystyle y=ar'+bs' \), per opportuni \(\displaystyle r,s,r',s'\in G \). Quindi: \[\displaystyle \begin{cases}xy=(ar+bs)(ar'+bs')=arar'+bsar'+arbs'+bsbs', \\ yx=(ar'+bs')(ar+bs)=ar'ar+ar'bs+bs'ar+bs'bs.\end{cases} \] Il problema è che da questo conto ...

vastità
Avrei bisogno di una mano con un limte (o meglio una tipologia) che non riesco a risolvere, si tratta di $lim_(x->0) sin(1/x)/x^6$ ma in realtà qualunque tipo di esponente del genere. non riesco a capire quale strategia usare per portarla a compimento (dire se esiste o no, insomma trovarsi il risultato). PS: Domanda di riserva.. Nel caso $lim_(x->0) sin(1/x)/x^-6$ metodo a) ho pensato di usare il confronto e mostrare che vale zero, riscrivendola come $lim_(x->0) sin(1/x)*x^6$, è giusto? metodo b)O posso anche dire: ...
9
15 ago 2018, 12:54

sportek
salve a tutti devo trovare la la stima della varianza degli errori della regressione attraverso il metodo della max verosimiglianza. il risultato deve dare: $ hat(sigma)_(MLE)^2=(RSS)/T $ partendo dalla log-verosimiglianza: $ -T/2ln(2pi) -T/2ln(sigma^2)-1/(2sigma^2)sum_t(y_t-alpha-betax_t)^2 = lnL(.) $ faccio la derivata per trovare e la uguaglio a zero per trovare il max ma non riesco a ottenere il giusto risultato, qualcuno conosce questa dimostrazione per la regressione lineare? non riesco a trovarla da nessuna parte. Grazie in anticipo
1
15 ago 2018, 22:23

40rob
Non so se è la sezione giusta, volevo porre una domanda di ordine filosofico più che matematico. Mi chiedevo come si può esprimere tramite qualche condizione logica che un insieme $X$ - che contiene un certo elemento $e$ ed è chiuso rispetto alla funzione $s$ - contiene soltanto elementi del tipo $e$ $s(e)$ $s(s(e))$ $s(s(s(e)))$ ... con qualche condizione logica (o magari con un'infinità di condizioni logiche ...

Jokah
Salve gente, scrivo qui perché riguardando i miei appunti mi pare siano incompleti o comunque non sufficientemente chiari, e infine sul libro di testo non trovo niente a riguardo. All'inizio di una lezione, senza che sia minimamente accennato cosa si intenda per continuità, trovo scritto questo: Equivalenza tra sigma additività ed assioma di continuità: Sia $\{B_k}_{k=1}^{\infty}$ una famiglia di insiemi al più numerabile (sottoinsieme dell'insieme delle parti in $\Omega$, lo spazio ...
1
15 ago 2018, 17:39

giovx24
salve, devo calcolare la sommabilità in 0 di questa funzione $(arctg(x))/(x*log(sqrt(|x-1|)))$ se non sbaglio dovrebbe essere asintotica a questa: $1/(x^(1/2)*log(sqrt(|x-1|)))$ e da qui non so come andare avanti help
9
13 ago 2018, 18:23

Lèo114
Ciao a tutti! (i) Mostrare che se un sottospazio $Y$ di uno spazio metrico $X$ consiste in un insieme finito di punti, allora è completo. Se $Y$ ha un numero finito di punti, allora non può avere punti di accumulazione, perché se \(\displaystyle y\in Y \) è possibile iterando la scelta di \(\displaystyle \epsilon \) ottenere eventualmente \(\displaystyle B(y,\epsilon)\cap Y=\varnothing \). Di conseguenza \(\displaystyle Y=\overline Y \) e un ...
15
14 ago 2018, 15:03

Appinmate
Buongiorno a tutti! Ho solo bisogno di una conferma.. $ int_ (1)^(+infty) e^x/ x^3 dx$ posso dire che diverge perché lo posso minorare con $ int_ (1)^(+infty) x^5/x^3 dx$ il quale diverge? Grazie in anticipo.
16
14 ago 2018, 14:15

ti2012
Salve a tutti. Chiedo scusa, sul materiale di studio c'è scritto: Dato un gruppo G, dati H e K sottogruppi di G, siano $H_1$, $H_2$,..., $H_n$ i coniugati di H in K e sia N la chiusura normale di H in $<<H, K>>$. Allora (per un certo teorema) N si può scrivere come prodotto degli $H_1$, $H_2$,..., $H_n$, ossia N = $H_1$$H_2$...$H_n$. Risulta che $<<H, K>>$ = NK. Perchè ...

Gandalf73
Carissimi, dovrei risolvere un integrale a cui non riesco a mettere mano e che secondo me richiede qualche passaggio che mi perdo per strada. A seguire $ \int_{0}^{\infty} \arctg \frac{1}{abs{1-x^2}} dx $ Effettuate le considerazioni rispetto al modulo del denomitatore nell'argomento dell'arctg , l'integrale fa parte di uno di quelli non esprimibili con una combinazione di funzioni elementari? Ho un feroce dubbio. A mio avviso confondo l'argomento dell'arcotangente con questo $ \frac {1}{1+x^2} $ che invece non risulta ...
2
14 ago 2018, 19:02

Jeff18
Non riesco a raccapezzarmi nel secondo punto di questo esercizio. qualcuno potrebbe darmi un aiuto? Grazie