Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Una bocca attiva è un contenitore metallico con un buco che aggancia una guida d'onda.
All'interno del guscio metallico sono presenti delle correnti impresse:
[fcd][FIDOCAD]
CV 0 112 60 86 60 80 65 65 77 49 65 45 41 63 31 87 33 93 36 96 44 99 45 102 44 105 43 112 43 0
LI 56 51 62 42 0
FCJ 2 0 3 2 0 1
TY 66 39 4 3 0 0 0 * J
TY 61 61 4 3 0 0 0 *
TY 69 43 2 2 0 0 0 * ie
LI 66 45 69 45 0
LI 60 51 67 60 0
FCJ 2 0 3 2 0 1
TY 59 58 4 3 0 0 0 * J
TY 65 61 4 3 0 0 0 *
TY 62 61 2 2 0 0 0 * im
LI 59 64 ...

Sia $(X,Y)$ un vettore aleatorio con distribuzione uniforme sul parallelogramma individuato dalle rette $y=0, y=1, y=x, y=x-1$. Calcolare le funzioni di ripartizione marginali di $X$ e $Y$ e stabilire se gli eventi $E = {X<x}$ ed $A = {Y<y}$ sono stocasticamente indipendenti.
Fino al calcolo delle funzioni di ripartizione ci sono arrivata ottenendo i seguenti risultati:
$F_X(x)=\{(0,x<0),(x^2/2,0<=x<=1),(x^2/2-x,1<=x<=2),(1,x>2):}$
$F_Y(y)=\{(0,y<0),(y,0<=y<=1),(1,y>1):}$
Il mio problema è la valutazione ...

Salve,
vorrei capire se il seguente ragionamento è corretto.
Sia A ∈ MR(3) una matrice quadrata 3 × 3 e avendo il seguente polinomio caratteristico:
$Pa(t) = (t^2 +4)(1-t)$
Questi a seguire sono miei ragionamenti.
Posso affermare che:
- Non ammette soluzioni reali, quindi non ci sono autovalori a causa di $t^2 +4 = 0$ e di conseguenza non è diagonalizzabile?
- Il suo determinante è 16 e la traccia è 7.
Pertanto considerando quest'altro polinomio:
$Pa = (4 - t)(1 + t)(2+t)$
è scomposto, ammette ...

Salve, sto avendo delle opinioni contrastanti riguardo l'esistenza di un omomorfismo che mandi un piano per l'origine in un punto Q.
Penso che i vettori paralleli/generatori "V" e "W" del piano debbano essere mandati entrambi nell'origine(l'unico sottospazio che mi viene in mente è, appunto, (0,0,0) ).
Mentre poi, prendendo un punto non appartenente al piano, questo debba essere mandato in Q.
Non riesco a capire come mai, da quanto mi è stato detto, esistano infiniti omomorfismi, se i miei ...

Salve,
perdonate il titolo poco appropriato ma non sono riuscito a far di meglio.
Nel seguito pongo
\[N_\delta(E):=\{x\in \mathbb{R}^N: \mathrm{dist}(x,E)\le \delta\},\]
dove la distanza è quella euclidea.
Parto dall'ipotesi che $B\subseteq N_\delta(A)$, dove $A$ e $B$ sono sottoinsiemi generici di $RR^N$. Ciò che non riesco a dimostrare è l'inclusione
\[B\subseteq N_\delta(A\cap N_\delta(B)).\]
È un po' che ci sbatto la testa ma non riesco a farla venir ...

Salve ragazzi ho problemi nel risolvere questo esercizio....Mi potreste aiutare per favore?
Determinare l’intersezione e la somma dei seguenti sottospazi di R4 ;
W = {(2x + y, x − y, 4x, 2x + 3y + z) : x, y ∈ R}, U = +
sia $a in ]0,1[$ e sia $<f: ]1, +oo[->RR^+$ una funzione continua. Provare che la serie è convergente.
$\sum_{n=1}^oo \int_1^(1+a^n) f(t)dt$
Ho provato così:
per il teorema dell'integrale della media si ha
$ EE c_n in ]1, 1+a^n[ : \int_1^(1+a^n) f(t)dt = f(c_n)a^n$
quindi
$\sum_{n=1}^oo f(c_n)a^n $
come faccio vedere che questa serie converge?

Ciao,
scusate se forse posto il mio primo messaggio nel posto sbagliato...
Vorrei chiedere se qualcuno può aiutarmi a capire come "addomesticare" la curva asintotica dell'immagine perché si avvicini maggiormente ad una curva asintotica ideale come l'altra immagine inclusa.
Grazie infinite e ciao.
Gianni

Si dia la definizione di coefficiente di autoinduzione, specificando il significato fisico e discutendo le condizioni di validità della definizione.
quali sarebbero le condizioni di validità?
Sia y la solizione del seguente problema di Cauchy:
$\{(y''-2^(x)y' + 2^(x)y=0),(y(0)=c),(y'(0)=2c):}$
Studiare, al variare di $c in RR$ la monotonia e la convessità di y in un intorno dell'origine.
Per prima cosa osservo che esiste la derivata prima, quindi è di classe almeno $c^1[a,b]$
poi come continuo?
Buonasera, non riesco a risolvere questo integrale: $ oint_(\gamma) \frac{sin\pi z}{(z-1)z^3(z+2)}dz $ dove $ \gamma $ è una curva chiusa, orientata positivamente, di sostegno $ |z+1|=3 $ .
Io ho provato ad applicare il teorema dei residui, e trovandomi un unico polo di ordine 2 in $ z=0 $ come unico polo interno a $ \gamma $ ho provato a calcolare $ lim_(z -> 0) d/dz z^2 \frac{sin(pi z)}{(z-2)z^3(z+1) $ e qua mi blocco. Vorrei capire dove sbaglio. Grazie.
Ciao, sono un po' confuso sul hint che mi ha dato l'assistente per calcolare questo limite, con \( t \in \mathbb{R} \):
\[ \lim\limits_{n \to \infty} \frac{1+e^{it} + \ldots + e^{int}}{n}\]
Mi ha detto
\[ \lim\limits_{n \to \infty} \frac{\sum\limits_{k=0}^{n} (e^{it})^k}{n}\]
E considera il cambio di variabile \( z = e^{it} \), però da quel che so \( \begin{vmatrix} e^{it} \end{vmatrix} = 1 \) per ogni \(t \) e dunque questo cambio di variabile \( \sum\limits_{k=0}^{n} (e^{it})^k = ...

Buonasera a tutti
Stavo cercando di dimostrare il seguente:
"Sia $f: X -> Y$ tra varietà della stessa dimensione con $X$ compatta e sia $R sube Y$ l'insieme dei valori regolari. Allora $f_(|f^(-1)(R)):f^(-1)(R)->R$ è un rivestimento a finiti fogli"
Inserisco in spoiler un mio "tentativo"
Dato $p in R$ devo cercare di costruire un intorno "ben rivestito". Poiché $p$ è regolare allora per ogni $q in f^(-1)(p), df_p:T_qX->T_pY$ è surgettivo(per definizione), dunque un ...

Buonasera, la consegna del mio esercizio è questa: "Determinare una base di $RR^5$ formata da vettori ortogonali che contenga il vettore $v$=$ ( 1 \ \ 0 \ \ 2 ) $ "
Un vettore generico è ortogonale a uno dato se il prodotto scalare è nullo.
Imposto l'equazione $x + 2z = 0$ e ottengo una base ortogonale di dimensione $2$.
Per esempio < $ ( 1 \ \ 0 \ \ -1/2 ) , ( 0 \ \ 1 \ \ 0 ) $ >
Se prendo gli elementi di questa base vedo che essi sono ortogonali al vettore ...

Ciao, ho una domanda.
$ int int int_(D)^()(x^2+y^2)^(3/2) dx dy dz $
Dove D è la regione di spazio interna al cono di equazione x^2+y^2=z e sottostante il piano parallelo al piano xy passante per (2,3,4)
allora, secondo me a monte c'è già un errore perché non è un cono ma un paraboloide (giusto?)
poi, ho integrato per strati tra z(0,4) e su un dominio in $R^2$ nel piano xy quindi $0<=x^2+y^2<=z$ ,ho usato le coordinate polari e mi sono ritrovato con un risultato diverso dal testo, che è (quello del testo) ...

Buonasera, stavo risolvendo questo problema: "Sia $V_2$ lo spazio dei polinomi di grado minore o uguale a due e sia $\varphi: RR^4 ->V_2$ l'applicazione lineare definita da
$\varphi(e_1) = x^2+1, \varphi(e_2) = x^2-1, \varphi(e_3) = x^2+x, \varphi(e_4) = x-2$
dove $e_1, e_2, e_3, e_4$ sono i vettori della base canonica di $RR^4$
1)Dopo aver identificato $V_2$ con $RR^n$ per un valore opportuno di $n∈NN$, si determini la matrice rappresentativa di $\varphi$ rispetto alla base canonica di ...
Salve, non so come procedere in questo problema:
Quattro cariche puntiformi sono disposte ai vertici di un quadrato di lato d (q si trova nel vertice in basso a sinistra del quadrato e Q vertice in alto a sinistra). Cariche in vertici opposti sono uguali. Calcolare il valore della carica q affinché su ciascuna delle cariche Q la risultante delle forze sia nulla.
Grazie mille dell'aiuto
Dimostra che un insieme \( A \) non può essere in biiezione con l'insieme dei suoi sottoinsiemi.
Allora vi chiedo se la mia idea è corretta e inoltre se sapete come trattare il caso in cui \( A \) è non numerabile.
La mia idea:
Se \( A \) è numerabile allora abbiamo due possibilità
1) Se \( \operatorname{card}(A) \in \mathbb{N} \), diciamo \( n \), allora è triviale, infatti \( \operatorname{card}(A)=n < \operatorname{card}(\mathcal{P}(A))=2^n \), \( \forall n \in \mathbb{N} \).
2) Se \( A ...
Siano A e B due sottoinsiemi non vuori di $RR$ tale che per ogni funzione strettamente monotona $f:]-oo, +oo[->RR$ si abbia $Sup f(A)=Inf f(B)$
Dimostrare che $EEc in RR : A=B={c}$
Ho provato così
Poichè f è una funzione strettamente monotona o è strettamente crescente o strettamente decrescente.
Per avere $Sup f(A)=Inf f(B)$ gli insiemi A e B sono contigui, per cui esiste un elemento di separazione, sia esso c. da cui si ha che $A=B={c}$
però come dimostrazione è incompleta. ...
Ciao ragazzi, nell'ultima prova il professore ha messo questa funzione:
$ f(z)=cot(z)/z^2 $
La traccia è cercare tutte le singolarità della funzione e inoltre trovare il valore del residuo in 0 della funzione. Ho già trovato le singolarità, dovrebbero essere 2 poli ovvero 0 e kpi, 0 polo di ordine 3 per k=0 e kpi di ordine 1 per k!=0, per il residuo non ho proprio idea di come procedere, ho pensato di utilizzare Laurent ma non so come procedere... Grazie a chi mi aiuterà.