Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Risolvere il problema di Cauchy:
$\{(y'=(1-e^-y)/(2x+1)),(y(0)=2):}$
$y'=(1-e^-y)/(2x+1)$
$dy/dx= (1-e^-y)/(2x+1)$
$dy/(1-e^-y) = dx/(2x+1)$
$log|1-e^-y|=1/2log|2x+1|+c$
E' corretto fin qui? Poi come dovrei continuare? Grazie

Sia $M$ l'insieme dei punti $(x,y,z) \in RR^3$ tali che $x^2 + 4 y^2 + 9 z^2 = 1$. Trovare una parametrizzazione $sigma : I \subset RR^2 -> RR^3$ dove $I$ in particolare è un rettangolo; data poi $f(x,y,z) = x y z$, calcolare $int_sigma f$.
Il tutto sta nello scegliere una parametrizzazione conveniente di $M$. Io ho provato con:
$\{(x = 2 t cos(theta)),(y= t sin(theta)):}$ allora $z = +- 1/3 sqrt( 1 - 4 t^2 )$ ma i conti vengono infiniti...

Salve a tutti vi chiedo un aiuto per gli estremi di integrazione dell'integrale triplo definito sull'insieme
$\{ (x,y,z\epsilon\mathbb{R^{q}}:4\leq x^{2}+y^{2},\frac{1}{4}(x^{2}+y^{2})\leq z\leq4\} $
L'integrale:
$\intintint zdxdydz$
Non sono molto pratico con l'utilizzo del linguaggio ma spero sia venuto bene. Grazie a tutti.
salve a tutti! vorrei chiedervi se potreste dirmi cosa succede se, utilizzando il metodo delle secanti, si cambiano i due punti iniziali x0 e x1!potreste anche darmi una funzione come esempio per farmi capire?inoltre anche un altro punto non mi è chiaro: se utilizzo il metodo delle secanti, esso non convergerà solo nel caso in cui la funzione in questione non è continua?? grazie in anticipo !:)

Ciao a tutti, sto svolgendo degli esercizi in preparazione all'esame di Fisica I e mi son bloccato davanti a questi due esercizi:
ESERCIZIO 1
si calcoli il modulo del momento della quantita di moto di un punto materiale di massa m=10Kg dopo 8 secondi sottoposto ad una forza F(t)=[9k+(5t^4)i] N (k e i, sono i versori). il punto all'istante iniziale ha velocità nulla e la forza è applicata nel punto P con polo O tale che il vettore OP vale OP=(0T^(-1) m, 0 m, -4 m).
ESERCIZIO 2
una massa di ...

Sto provando a fare qualche esercizio sulle forme differenziali, ma sto trovando qualche difficoltà.
$\omega = (x/(x^2 +y^2) + sin x) dx + (y/(x^2 +y^2) + e^y) dy$
la curva $\phi$ di equazioni parametriche è: $\phi = (t,cos t)$
io so che:
$\int \omega = \int x(t) x'(t) dx + \int y(t) y'(t) dy$
ma i calcoli, sono venuti, nel mio caso un pò lunghetti... non è che percaso si potrebbe 'spezzare' i vari integrali in questo modo:
$\int x/(x^2 +y^2) dx +\int sin x dx + \int y/(x^2 +y^2) dy + \int e^y dy$
moltiplicando ogni pezzo per la propria derivata? mi sa che mi sfugge qualcosa...
Salve, come determinare le soluzioni di un sistema di 2 equazioni in 4 incognite?
sistema s:
$\{(2a - 2b - c - 2d = 0),(a - b + c + 2d = 0):}$
otteniamo infinite soluzioni, ma come si trova la generica soluzione rispetto a un fattore di proporsonalità t?
Ora ho a che fare con un sistema 2x4 ma mi servirebbe una spiegazione generica per trovare le soluzioni e per poi poter riapplicare tale metodo con sistemi di diverso "formato". GRAZIE

salve a tutti, la domanda è molto semplice, e aimè, mostra gravi lacune! (beata analisi 1 )
semplicemente ho un esempio in cui è scritto che $ln(x)/(x+1)$ è una funzione appartenente allo spazio $L^2$
il che ovviamente vuol dire che $int_R|ln(x)/(x+1)|^2<oo$ in effetti in zero il ln(x) va a meno infinito più lentamente di qualsiasi potenza di $1/x$ e per x che tende a infinito ln(x) va a infinito + lentamente di qualsiasi potenza di x,
la domanda quindi è:
questo mi ...

ho un esercizio che mi dice:
si scriva un funzione p(int n,int m) che, presi in ingresso due numeri n ed m,ritorni 1 se n è divisibile per una qualsiasi potenza $m^i$ di m, con i>1, e 0 altrimenti...
#include<stdio.h>
#include<math.h>
int p(int n,int m)
{
int i,a;
for(i=2;i<=m;i++)
{
while(m>0)
{
m=m^i;
a=n%m;
if(a!=0)
return 1;
}
return 0;
}
}
int main ()
{
printf("%i\n",p(8,4));
}
però non ...

Ciao a tutti, volevo un chairimento di analisi 1, riguardo ai punti di non derivabilità e alla retta tangente in questi punti.
Un punto angoloso può avere retta tangente nel punto? Quello che ho avuto modo di verificare è che ci sono due rette tangenti con coefficienti angolari di segno opposto che si avvicinano al punto, quindi a mio avviso non dovrebbe esserci.
In un punto di cuspide, mi chiedevo, la retta tangente nel punto, potrebbe essere una retta a tangente verticale?

Ciao a tutti,
Sto studiando per un esame e sul mio libro di logica mi sono imbattuto in due esercizi che non so bene come risolvere:
1)Si definisca mediante induzione strutturale una struttura ad albero.
2)Si definisca mediante ricorsione strutturale l’insieme degli Antenati a partire
dall'insieme dei Genitori.
Qualcuno è in grado di darmi una mano? Grazie mille

In una prova d'esame della mia professoressa mi sono imbattuto in questo quesito, che probabilmente è semplicissimo, ma io non riesco a comprenderlo. il quesito è : "Disegnare il diagramma di una funzione definita in R/(0) crescente, limitata e avente una discontinuità nel punto 1. Specifica se il diagramma è dotato di asintoti. "
Allora il quesito chiede una funzione che sia crescente, quindi NECESSARIAMENTE continua (ovviamente nel suo insieme di definizione). Ma come fa allora ad essere ...

Salve a tutti, mi sono imbattuto in questo quesito a risposta multipla:
" Siano V, W due spazi vettoriali reali e $ f: V -> W $ un'applicazione lineare.
a. Se $ dim(V)=2, dim(W)=3 $ allora f è necessariamente iniettiva
b. Se $ dim(V)=2, dim(W)=1 $ allora f è necessariamente suriettiva
c. Se $ dim(V)=2, dim(W)=1 $ allora f non può essere iniettiva
d. Se $ dim(V)=1, dim(W)=1 $ allora f è necessariamente un isomorfismo
Ora io il quesito l'ho risolto in questo modo: applicando il teorema della dimensione ho ...

ciao ragazzi, mi si chiede l'ordine d'infinitesimo di $f(x) = x^5sin(2x^2-5) per x->0$
sviluppando con taylor $x^5((2x^2-5)+o(x^2))=2x^7-5x^5 +o(x^7)$
essendo la parte principale la prima parte che non si annulla, secondo voi in questo caso posso dire che la parte principale è -5x^5 oppure devo prendere tutto lo sviluppo, dato che rappresenta quello del prim'ordine?
In ogni caso l'ordine di infinitesimo è cmq 5?
grazie a tutti

Caio a tutti,
potreste darmi una mano con questo esercizio con cui sto avendo difficoltà? (probabilmente la soluzione è abbastanza semplice ma al momento sono talmente confusa dallo studio che non riesco proprio a tirarmene fuori)
L'esercizio mi fornisce un'applicazione lineare $T:RR^4toM_{2,2}$ data da:
$T(x,y,z,t) = |(8x,9y),(z,t)|$
e ho un sottospazio vettoriale $U={vinRR^4: tr(T(v))=0}$
Devo trovare una base ortonormale di $U$ ma, non essendomi mai capitato un esercizio in cui l'applicazione ...

Non riesco a capire quest'esercizio e come si svolge:
Densità congiunta.
\[f(x,y) = \begin{cases} 2e^{-(x+y)} & \mbox{if }\ 0

Ciao a tutti
avrei una dubbio su record imbattibile e lower bound...
a quanto ho capito, il record imbattibile ci dice che l'altezza di un albero binario sarà al minimo $log n$ ed al massimo $n$.
Questo significa che algoritmi che dividono in due il problema andranno a formare un albero binario di altezza h saturo fino al lv h-1, mentre, algoritmi che non dividono in due il problema potrebbero andare a formare un albero degenere.
Da qui deriva il lower bound che ci ...

Determinare l'integrale particolare dell'equazione differenziale \(\displaystyle y' -2xy = x \)
che soddisfa la condizione \(\displaystyle y( 0 ) = 1 \)
Ho trovato così \(\displaystyle A( x ) \):
\(\displaystyle A( x ) = \lmoustache a( t )dt = \lmoustache 2xdx = x^2 \), poi ho trovato, per parti:
\(\displaystyle \lmoustache x exp( -x^2 )dx = xexp( -x^2 ) - exp( -x^2 ) +1 \), la soluzione finale:
\(\displaystyle y( x ) = x + 1 \), ma so che la soluzione è:
\(\displaystyle exp( x^2 ) -1/2 \)
Dove ...

Ciao a tutti, sto cercando di fare questo esercizio di analisi e penso di essere molto vicino alla soluzione, ma non mi viene il risultato, vi spiego:
"Stabilire per quali x>0 converge la verie: $\sum_{n=1}^infty 1/(n^2*x^n)$"
io ho risolto secondo il criterio del rapporto, dove, dopo aver risolto il limite rimango con $1/x$, e quindi la condizione di convergenza (limite < 1) è risolta per $x>1$.
Il problema è che il risultato sul libro è $x>=1$
Non riesco a capire ...

Salve a tutti!
Stavo affrontanto l'argomento delle matrici diagonalizzabili e svolgendo un esercizio che chiedeva di diagonalizzare una matrice considerandole sia come elementi di $RR^(2x2)$ sia come elementi di $CC^(2x2)$.
Il polinomio caratteristico è il seguente:
$(1 - \lambda)^2 - 4 = 0$
da cui ricavo l'equazione di secondo grado:
$\lambda^2 - 2\lambda - 3 = 0$
le cui soluzioni sono:
$\lambda_1 = -1$
$\lambda_2 = 3$
che, essendo radici distinte, presentano molteplicità algebrica 1.
Mi ...