Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Tonino931
$\lim_{x \to \infty}x^2*ln((x-1)/(x+1))$ Si può tranquillamente risolvere con il teorema di L'Hospital, però il professore vuole che lo risolviamo con l'asintoticità. A parte l'applicazione dell'asintoticità in $oo$ al numeratore e al denominatore dell'argomento del logaritmo (che mi permette di sostituire l'argomento del logaritmo con $x/x$, ossia $1$) , non so come procedere oltre. Spero che qualcuno possa aiutarmi.
3
25 set 2012, 19:52

Simone.S1
Scusate il disturbo ma sono alle prese con questo problema (o meglio con la richiesta b) da giorni ormai, potreste aiutarmi? Una pallina di massa $m=20g$ e diametro $d=2mm$ è in quiete dentro un guscio sferico di raggio $R=2cm$ con il centro di massa alla quota $h_A=R/2$. Determinare la velocità del centro di massa della pallina, quando passa per il fondo, nei due casi: a) il guscio è liscio; b) il guscio non è liscio e la pallina rotola senza ...

Sk_Anonymous
Mi stavo gingillando un po' con il seguente esercizio, ed ho provato a risolverlo: Sia \(\displaystyle \varphi:[0,+\infty) \to [0,+\infty) \) una funzione non negativa tale che: a) \(\displaystyle \varphi(0)=0 \); b) \(\displaystyle \varphi \) è strettamente crescente; c) \(\displaystyle \varphi \) è continua. Provare che per ogni successione \(\displaystyle (a_{n})_{n \in \mathbb{N}} \) vale l'implicazione \[\displaystyle \sum_{n=1}^{\infty} \varphi(|a_{n}|) < \infty \quad \Rightarrow ...

DR1
1°$AA A != {} EE B (B in A ^^ A nn B = {})$ -------------------- $A nn B iff AA x(x in A ^^ x in B)$ $(A nn B = {}) rArr not[AA x(x in A ^^ x in B)]$ $(A nn B = {}) rArr [EE x(x in A vv x in B)]$ -------------------- 2°$AA A != {} EE x (x in A ^^ A nn B = {})$ è più corretto del primo ? perchè nel primo, se $B in A rArr A nn B != {}$. Giusto ? se sbaglio, mi spiegate perchè ?

giuscri
Stamattina per caso ho trovato sulla pagina di Wiki un algoritmo chiamato "crivello di Eratostone": è un metodo "non molto efficace" (come dice l'Enciclopedia) per trovare tutti i numeri primi presenti nell'intervallo $[a,b] \in NN$. Descrizione: Il procedimento è il seguente: si scrivono tutti i naturali a partire da 2 fino n in un elenco detto setaccio (in programmazione spesso l'elenco è implementato da un array). Poi si cancellano (setacciano) tutti i multipli del primo numero del ...
6
25 set 2012, 16:34

mpulcina
ciao ragazzi, oggi devo derivare due volte la funzione $ h(t)=f(x;y(x)) $ , mi potete dare un'idea sul come muovermi? io ho pensato di trovare la derivata prima $ h^1(t)=f^1(x,y(x)) $ e ora?
7
22 set 2012, 15:27

Kvashir
Ragazzi nuovo quesito, Un esercizio implica la determinazione di $[7]^-1$ e $[-7]$ in $Z64$ so che $[7]^-1$ indica la classe inversa di $7$ ma $[-7]$? Indica l'opposta? Calcolando ho determinato che $x$ tramite divisione successiva nell'equazione diofantea $7x+64y=1$ risulta $x=9$, quindi la classe inversa dovrebbe essere $[9]$, corretto? A questo punto l'opposta di ...

laura1232
per $n in NN$ $sin(1/n)$ è decrescente in quanto $1/n$ è una successione decrescente limitata tra $0$ e $1$ ed essendo la funzione $sin y$ crescente in tale intervallo, la sua combinazione con una funzione decrescente è una funzione decrescente. Di conseguenza si può applicare il criterio di Leibniz.
6
18 set 2012, 23:52

7ania92
Salve, avrei una domanda da proporvi: se ho due rette sghembe $s$ e $r$ , esiste sempre un piano passante per $s$ e perpendicolare a $r$ ??
4
24 set 2012, 17:29

Kashaman
Salve ragazzi, in fisica sono incappato in questo termine, in particolar modo studiando i vettori nello spazio. Fissiamo un sistema di riferimento cartesiano $Oxyz$. e un vettore $v$. Denotiamo con $\alpha, \beta,\gamma$ gli angoli che esso forma rispettivamente con l'asse $x$,$y$,$z$. assumendo che $v=a_xj+a_yj+a_zk$ dove $i,j,k$ sono i versori degli assi, si ha che $a_x=vcos(\alpha)$ $a_y=acos(\beta)$ $a_z=acos(\gamma)$ il ...

calzi24
un contenitore del volume interno costante di 0.08 m ^3 ha nel suo interno aria (consideriamola gas biatomico) e un solido. il solido ha massa 100 g, densità 3000 kg/m^3 e calore specifico 900 J/ kg K. inizialmente il sistema si trova in equilibrio alla temperatura di 300 K e a pressione 10^5 Pa. direttamente al solido viene fornita molto lenyamente una quantità di calore di 3000 J. A parte questa quantità di calore non vi è nessun altro scambio di energia tra il contenuto del recipiente e il ...

markolino
Avrei dei dubbi riguardo lo studio della differnziabilità di funzioni a due variabili, consideriamo la seguente funzione: [tex]f(x,y) =[/tex][tex]\left\{\begin{matrix} \frac{x^{4/3}y}{x^2+y^4} (x,y)\neq(0,0)& \\ 0(x,y) = (0,0)& \end{matrix}\right.[/tex] Devo studiare continuità, derivabilità e differenziabilità. La funzione è sempre continua tranne che in [tex](0,0)[/tex] dove non è continua, poi calcolando le derivate parziali: [tex]fx(x,y) = ...
4
16 set 2012, 19:53

dreamande
Buongiorno a tutti, mi sono imbattuto in un tema d'esame con un testo che non mi è molto chiaro e chiedo a voi se riuscite ad illuminarmi. Il testo recita: "Da una semisfera di raggio R si estrae un cilindro K di raggio r
22
20 set 2012, 13:24

stagna1
so che un insieme ($sube RR^n$) è compatto se e solo se è chiuso (e limitato). non riesco a darmi un'interpretazione "intuitiva" (ma magari non esiste ) del perchè un aperto non possa essere compatto. $(-1,1)$ non è compatto perchè il ricoprimento aperto ${(-1+1/n,1-1/n)}$ non ha un sottoricoprimento finito. ma per $ nrarr oo $ quell'insieme non è proprio $(-1,1)$? c'è una qualche relazione con i punti di frontiera che mi sfugge? del tipo che non li ...
4
25 set 2012, 07:55

Allen10
Esprimi i seguenti dati in unità di misura del Sistema Internazionale: 5cm 2kmol 3ms 4hK 1u.A( la u è quella di utorrent) 33mm 1,5hg Per favore potete dirmi anche come fate a risolverlo? Grazie

DavideGenova1
Ciao, amici! Vorrei chiedere se la mia interpretazione di un passo su alcune permutazioni del Sernesi, Geometria I, è corretta. Nella dimostrazione della validità dello sviluppo per righe del determinante (p. 82 dell'ed. del 2000 Bollati Boringhieri) l'autore considera i termini della sommatoria \(\sum_{p\in\sigma_n}\epsilon(p)a_{1p(1)}...a_{np(n)}=\det(A)\) in cui, per un $j$ fissato, compare $a_{1j}$, che sono della forma \(\epsilon(p)a_{1j}a_{2p(2)}...a_{np(n)}\) dove ...

Vito850
$lim_(x->-1^-)log(1+(1/x))-1/(x+1)$ è una forma indeterminata $oo -oo$ che non riesco a risolvere. come procedo?
8
20 set 2012, 12:39

calzi24
qualcuno sa dirmi come si risolve? io ci ho provato, ma ho sbagliato qualcosa... e quindi vorrei sapere cosa c'è di buono in quel che ho fatto.. un blocco di massa 350g che parte da fermo viene accellerato mediante una forza esercitata da una molla compressa di costante elastica pari a 640 N/m. il blocco lascia la molla quando questa è in condizioni di equilibrio (non estesa o compressa) e viaggia su di un piano orizzontale con coefficiente d'attrito pari a 0.25. la forza d'attrito ferma il ...

kant1
Ciao a tutti Avrei bisogno di aiuto con lo studio di alcune eq differenziali. Gli esercizi consistono nel trovare gli intervalli di monotonia, gli asintoti, ed eventuali simmetrie della soluzione dell'equazione senza calcolarne l'integrale generale. I due esercizi sono i seguenti y'=y^2 *(y-1)*x y'=(y+1)log(y+1)*Radq(|x|) (con radq intendo radice quadrata) Vi ringrazio in anticipo per l'aiuto =)
3
24 set 2012, 19:16

noipo
Ciao a tutti! Fra poco ho un esame di Analisi I e stavo guardando il programma per sapere quali dimostrazioni bisogna conoscere. Ho sempre preso appunti e non ho saltato lezioni però alcune dimostrazioni che sono chieste non le trovo negli appunti. Mi aiutate? Elenco quelle che mi vengono richieste: - Limiti di successioni: definizione di successione convergente, divergente o indeterminata. Esempi: potenze e successione geometrica (con dimostrazione) (Non ho dimostrazioni a riguardo..) - ...
2
24 set 2012, 19:33