Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti i forumisti,
Vi propongo il seguente teorema:
______________________________________________________________________________________________________
Consideriamo un insieme $\Omega sub CC$ aperto. Sia $f=u+iv : \Omega -> CC$. Sia $z_0=x_0+iy_0$ un punto di $\Omega$. Sono equivalenti:
(1) $f$ è olomorfa in $z_0$
(2) $u$ e $v$ sono funzioni differenziabili in $z_0$ e valgono le condizioni di Cauchy-Riemann ...
Scusate avrei bisogno di una mano,
qual'è la formula per calcolare lo scarto standard dei residui in una regressione di tipo esponenziale??
Ossia io calcolo comunque la sommatoria delle differenze al quadrato tra i valori osservati e quelli previsti dal modello di approssimazione esponenziale, (SSE)
ma questo valore per quanto poi va diviso? se la numerosità campionaria è ad es. 24, a quanto ammontano i gradi di libertà?
io ritenevo 22..
grazie per ogni eventuale suggerimento
salve a tutti, volevo chiedere il vostro aiuto su un esercizio, ho il seguente manovellismo:
dove le dimensioni dei vari componenti sono tutte note, nei punti A e C (dove sono i cerchi blu) e' presente attrito di raggio $rho$, inoltre c'e' attrito anche tra il componente 1 e 2, e tra 4 e 6, M e' il momento applicato al corpo 5.
tra le varie richieste dell'esercizio c'e quella di calcolare la reazione $R_(1,6)$ tra 1 e 6 e $R_(1,3)$ tra 1 e 3...
solo che mi perdo e ...
ho fatto questa funzione per scambiare due righe tra loro:
float sca (int x, int y)
{
for (i=1;i<=c;i++)
{
a[0][i]=a[x][i];
a[x][i]=a[y][i];
a[x][i]=a[0][i];
}
}
...dove a[x][y] è l'elemento di posto x della riga y.
Ovviamente non funziona. se richiamo ad esempio sca (2,4) non accade nulla.
ho pensato di dover ...
Avrei una domanda, come mai il flusso del campo gravitazionale generato da una massa puntiforme ma esterno a una superficie chiusa è nullo?
Ciao a tutti, non capisco un passaggio di una ricorrenza lineare:
$T(n) = 2T(n^(1/2)) + log n$ poi pongo
$n = 2^m$ e ottengo $T(2^m) = 2T((2^m)^(1/2)) + log (2^m) = 2T(2^(m/2)) + log (2^m)$ e fin qua tutto ok.
Poi il prof dice:
Pongo $S(m) = T(2^m)$ e ottengo $S(m) = 2S(m/2) + m$
Non capisco... io avrei fatto così:
Prendo $T(2^m) = 2T(2^(m/2)) + log (2^m)$, lo riscrivo come $2T(2^m * 2^(-2))) + log (2^m)$
Pongo $S(m) = T(2^m)$ e ottengo $S(m) = 2S(m/2^2) + m$
Dove sta il mio errore?
Buongiorno, ho difficoltà con quest'esercizio.
Una serratura si apre con codice decimale di 4 cifre. Trovare il numero massimo di tentativi che bisogna effettuare per aprire la serratura sapendo che 2 cifre sono pari e 2 cifre sono dispari.
Per me, 10*10*10*5=5000, ma la soluzione è 3750. Io ho considerato la sequenza pari-dispari-pari-dispari, che per me è, equivalentemente ad altre, la peggiore. Grazie.
Salve, scusate ma non ho trovato una sezione più attinente.
[leggete "segnale" = "funzione"]
Ho degli esercizi che richiedono il calcolo della trasformata di Fourier di un segnale definito a tratti quindi non usa la definizione ma i teoremi di derivazione ed integrazione della trasformata; fin qui ci sono.
La cosa che non capisco nello svolgimento è che effettua per le parti del segnale prima la derivata seconda, poi la derivata prima e l'ultima parte non la deriva e non ne capisco il motivo. ...
Queste due funzioni ammettono primitiva nonostante siano discontinue in x=2 e x=1?
$f(x)={(x-1 if 1<=x<=2),(2x if 2<x<=4):}$
$g(x)={(1 if 0<=x<=1),(2 if 1<=x<=2):}$
grazie
L'urna A contiene una pallina bianca e una nera, l'urna B contiene una pallina bianca, una nera e una rossa. Si riuniscono le palline in un'unica urna e si estraggono simultaneamente due palline. Qual è la probabilità che siano dello stesso colore.
io avevo pensato di fare la C1,2/C5,2 moltiplicato per 3 (dato che i colori delle palline sono 3 oppure per 5 perchè le palline sono 5?). Ma ovviamente la C1,2 è impossibile e non sono nemmeno tanto sicura che la moltiplicazione per 3 o per 5 sia ...
Salve, ho una domanda "secca".
Se ho un insieme con infiniti $+1$, posso dire che ha la stessa cardinalità dei numeri naturali oppure devo concludere che un solo elemento? Dovrebbe essere uno solo a quanto ho capito, è così?
Grazie
Ciao, amici! Se $f$ è derivabile e $g$ ammette una primitiva $G$ allora \((g\circ f)\cdot f'\) ha per primitiva \(G\circ f\):\[\Bigg{[}\int g(x)dx\Bigg{]}_{x=f(t)}=\int g(f(t))f'(t)dt.\]
Mi chiedo se, qualora esista invece il membro destro, si possa stabilire l'esistenza del membro sinistro...
$\infty$ grazie a tutti!
Mi sono visto un po' di concetti base di statistica/probabilità riguardo a un esperimento casuale(aleatorio) ma trovo un po' di difficoltà nell'assegnare la probabilità ai vari eventi della $ sigma $ -algebra considerata:
immaginiamo che l'esperimento sia "lancio di una moneta"...
lo spazio campionario sarà $ Omega ={T,C} $ ovvero altro non sono che i singoli esiti possibili.
Ora da quanto ho capito per assegnare un valore di probabilità a ciascun evento è necessario considerare ...
Ciao a tutti, ho una matrice con un autovalore reale e due complessi coniugati. Devo calcolare l'autovettore relativo a uno dei due autovalori complessi e trovo un vettore le cui componenti dipendono da un fattore $ e^(ipi /6) $ , devo tenermelo o posso prendere una fase arbitraria $ varphi =0 $ ?
Una molla di costante elastica K=82 N/m è stata compressa di una lunghezza X=0,68 m e mantenuta in compressione con un corpo di massa m=0.8 kg, inizialmente in quiete nel punto A. nel tratto orizzontale A-B è presente attrito (coefficiente di attrito dinamico =0.50), mentre la rampa di lancio è priva di attrito. il piano orizzontale è di lunghezza =1.2 m.
-Si calcoli l'energia potenziale della molla:
$U= 1/2 kx^2$ dove x è l'allungamento della molla;
- Si calcoli il lavoro fatto dalla ...
Ragazzi ho un problema con la gittata massima su un piano inclinato :
Una collina è inclinata di un angolo $φ$ rispetto alla direzione orizzontale. Una palla viene lanciata dalla sua
sommità con una velocità iniziale che forma un angolo $α$ con l’orizzontale. Dimostrare che, a parità di modulo della velocità iniziale, l’angolo di gittata massima, misurata lungo la collina, è dato da $α_max$ = $π/4 − φ/2$.
le equazioni del moto ...
Salve a tutti, ho questo sistema:
$ ( ( dot(x) ),( dot(y) ),( dot(z) ) )= ( ( 1 , 0 , a ),( 1/2 , 1 , 1 ),( 2 , -2a , 1 ) ) ( ( x ),( y ),( z ) ) $
Ho calcolato gli autovalori della matrice per vedere quando è diagonalizzabile e ne ho trovato solo 1,
$ lambda =1-a^(2/3) $ ,
quando calcolo gli autovettori trovo
$ a=0rArr v=(0,t,0) $
$ a!= 0rArr v=(0,0,0) $ .
Ho sbagliato qualcosa? altrimenti, come trovo la soluzione?
Ciao ragazzi ho trovato questo codice per verificare se un numero e' primo:
int IsPrimo(int x)
{
int i = 0;
for(i = 2; i
Salve a tutti i forumisti.
Ho una successione di numeri ${c_n}_n$ e pongo \(\displaystyle \limsup_{n \to \infty}\)$ root(n)(abs(c_n))=1/R$
Sapendo che $lim_{n \to \infty} root(n)(n)=1$, "dovrebbe" essere evidente che \(\displaystyle \limsup_{n \to \infty}\)$ root(n)(nabs(c_n))=1/R$
Facendo un paio di osservazioni sulle successioni estratte, ho dimostrato che \(\displaystyle \limsup_{n \to \infty}\)$ root(n)(nabs(c_n))>=1/R$. Ora mi resta da dimostrare la disuguaglianza opposta, e qui ho dei problemi.
Qualcuno ha qualche ...
Salve a tutti,
benché abbia chiesto chiarimenti al docente al riguardo, non sono riuscito a comprendere come derivare una serie di potenze e di MacLaurin (in Analisi II) in alcuni casi particolari.
Per indicarvi quali casi particolari intendo, vi mostro direttamente due esempi:
1_
$f(x)=\sum_{k=1}^\infty\frac{1}{3k(k+5)}(x)^(2k+4)$
che diventa
$f(x)=x^4\sum_{k=1}^\infty\frac{1}{3k(k+5)}(x)^(2k)$
Senza quell'x^4 calcolerei facilmente la derivata decima di f(x) grazie al noto teorema che lega le derivate di f ai coefficienti della serie.
2_
Questa è un po' ...