Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
DeSkyno18
Salve a tutti, ho dei dubbi sulla dimostrazione della formula del gradiente e, cercando online, ho notato che la dimostrazione fatta dalla prof è diversa (forse più leggera?) ed è la seguente: Consideriamo l'applicazione: $ t->(x+t\alpha,y+t\beta) $ tale che, per valori di $ t $ abbastanza piccoli, il punto appartiene ancora ad A poiché aperto. Considero la funzione composta: $ F(t) = f(x+t\alpha,y+t\beta) $ con $ t\in(-\delta,\delta) $ Poiché $ f $ è differenziabile nel punto $ (x,y) $ per ...
3
17 giu 2023, 10:40

SteezyMenchi
Salve a tutti, volevo mostrare (mi serve per un esercizio) che $lim_{b \to 0} \frac{1}{4b}H(x+b)-H(x-b) = 1 / 2 \delta(x)$, ove le notazioni sono chiare dall'header. Qui posto i miei conti, non credo siano giusti, però li posto comunque tanto tentar non nuoce: Per $x < 0$ il limite è proprio zero dalla definizione della funzione gradino. Per $x> 0$ è evidente che quell'espressione tende ad una forma indeterminata $[0 / 0]$. Fissato un $x \in ]0, \infty[$, le due funzioni diventano funzioni della variabile ...
5
18 giu 2023, 01:08

Bho76
Salve sto avendo problemi nella risoluzione di questa serie: $ sum_(n =1 \) ((n-3)/(n+1))^(n^2) $ Ho provato a usare il criterio del rapporto ma facendo i calcoli mi trovo che la serie diverge positivamente ma il libro porta che converge, probabilmente dovrei ricavarmi un limite notevole o cose del genere. Se qualcuno riesce a spiegarmi il procedimento ne sarei grato. Grazie in anticipo.
4
17 giu 2023, 12:45

DeSkyno18
Salve a tutti, ho un dubbio sulla classe di continuità per curve regolari a tratti. Online non ho trovato quasi nulla, tranne una definizione che riporto qui: Una curva $ \gamma $ regolare a tratti è di classe $ C^1 $ se $ \gamma $ è continua nell'intervallo $ [a,b] $ ed esiste una partizione di $ [a,b] $ per cui, $ \foralli $, $ \gamma_i $ risulta di classe $ C^1 $. Ora, non so se questa definizione è corretta o meno, ma nel caso in ...
3
17 giu 2023, 10:46

SteezyMenchi
Non voglio sembrare disperato, ma stavolta non ho la più pallida idea di come risolvere un esercizio: cioè credo di sapere come andrebbe risolto in teoria ma in pratica non saprei proprio, non è il solito esercizio cui sono abituato, credo ci sia qualche trucco per risolverlo facilmente (sì il professore ama mettere esercizi all'apparenza impossibili, ma con la giusta intuizione dovrebbero diventare facilissimi). Riporto l'esercizio uguale a com'è scritto: Data la funzione $P(x) = H(x)e^{-x}$, ...
8
16 giu 2023, 15:33

Angus1956
Consideriamo l'insieme in verde: e consideriamo la relazione di equivalenza data da due punti sono equivalente se e solo se si trovano entrambi su una delle tre circonferenze di centro $(-1,-1),(1,-1)$ e $(0,0)$ e e dalle relazioni che si ottengono dalla riflessività, simmetria e transitività. Sia $Y = X//∼$ munito della topologia quoziente Dire se $Y$ è semplicemente connesso. Direi di no, poichè il gruppo fondamentale dovrebbe essere ...
6
16 giu 2023, 17:19

thedarkhero
Il fatto che si possa costruire una funzione iniettiva $f : NN^2 \to NN$ è noto. Una costruzione classica consiste nello scrivere gli elementi di $NN^2$ in forma tabellare in modo che in corrispondenza della riga $n$ e della colonna $m$ della tabella si trovi l'elemento $(n,m)$, quindi si considerano le diagonali della matrice a partire da quella che contiene solo l'elemento $(0,0)$, passando poi a quella che contiene gli elementi ...

Angus1956
Sia $V={(x,y,z)inRR^3|0<=z<=1+x^2+y^2,x^2+y^2+z^2<=5}$. Sia $finC(RR^3,RR)$, scrivere $\int int int_V f(x,y,z)dxdydz$ per mezzo di $z$-fili e per mezzo di $z$-strati. Dire poi perchè il teorema di Fubini è applicabile. Calcolare $\int int int_V x^2dxdydz$ obbligatoriamente per coordinate cilindriche e calcolare $\int int int_V x^3dxdydz$ senza fare calcoli. $z$-fili: $\int int_D (\int_0^{sqrt(5-x^2-y^2)}f(x,y,z)dz)dxdy+\int int_{D'} (\int_0^{1+x^2+z^2}f(x,y,z)dz)dxdy$ con $D={(x,y)inRR^2|1<=x^2+y^2<=5}$ e $D'={(x,y)inRR^2|x^2+y^2<=1}$ $z$-strati $\int_0^1(\int int_D f(x,y,z)dxdy)dz+\int_1^2(\int int_{D'} f(x,y,z)dxdy)dz$, dove $D={(x,y)inRR^2|x^2+y^2<=5-z^2}$ e ...
2
13 giu 2023, 14:23

dattolico_007
Salve a tutti ho difficoltà nel comprendere la struttura della seguente dimostrazione. Il teorema dice: Sia $a \in R,a>0,a!=1$. Sia $x\in R$. Allora: - $a>1 rArr Sup{a^(q') : q' \in Q, q'<x}=Inf{a^(q'') : q'' \in Q, x<q''}$ - $0<a<1 rArr Inf{a^(q') : q' \in Q, q'<x}=Sup{a^(q'') : q'' \in Q, x<q''}$ Lo scopo è quello di dimostrare che i due insiemi $X={a^(q') : q' \in Q, q'<x}$ e Y=${a^(q'') : q'' \in Q, x<q''}$ sono contigui e dimostrare così che $a^x$ sia l'unico elemento di separazione (almeno ho inteso così). Dimostrazione Per $a>1$ Si dimostra che entrambi sono non vuoti e separati così ...

CosenTheta
Sto tentando di calcolare la tensione $v_3$ ai capi del condensatore $C_y$, come mostrato in figura. La tensione del generatore $V_x$ è un gradino di Heaviside unitario. Le leggi di Kirchoff e le relazioni caratteristiche dei vari componenti sono le seguenti $V_x - v - v_1 = 0$ $v_1 - v_2 - v_3 = 0$ $i = i_1 + i_2$ $i_2 = i_4 + i_3$ $i = v/R_x$ $i_1 = C_x \frac{d}{dt}v_1$ $i_2 = C_{xy} \frac{d}{dt}v_2$ $i_3 = C_y \frac{d}{dt}v_3$ $i_4 = v_3/R_y$ Voglio arrivare a ...
8
16 giu 2023, 01:38

Ney20
Buonasera, stavo studiando questo problema:https://files.fm/u/h3je7v8a9 Vorrei sapere se é giusto questo procedimento per trovare la prima richiesta, posiziono il s.d.r. sul corpo 3 e scrivo la formula dei moti relativi, $ V1= Vt + Vr $ in cui $ V1 $ é nota poiché é nota $ /omega 1 $ ed é perpendicolare ad $ OA $, $ Vt $ corrisponde a $ V3 $ ed é orizzontale mentre $ Vr $ é verticale. Può essere corretto? Grazie.
0
17 giu 2023, 22:20

Zzxz1
Ciao a tutti, ho difficoltà a capire questo problema in cui c'è un pistone vincolato tramite un perno al tamburo 1 che può scorrere nella guida del corpo 3, mentre l'asta 2 é fissata in B (https://files.fm/u/v49pzuwvb). Viene detto esplicitamente di porre il s.d.r. solidale al corpo 2. Si devono calcolare la velocità relativa di A e la velocità di A. So che la velocità di A é parallela ad AC ma non riesco a capire il moto del sistema e non so come applicare la regola dei moti relativi ( non riesco a ...
2
16 giu 2023, 20:15

Angus1956
Sia $V={(x,y,z)inRR^3|x^2+y^2<=z<=8-x^2-y^2}$ determinare $I=\int int int_V y^3+2 dxdydz$. Dire che relazione c'è fra $I$ è il volume di $V$ senza fare calcoli. Per linearità si ha che $\int int int_V y^3+2 dxdydz=\int int int_V y^3dxdydz+\int int int_V 2dxdydz$, siccome $V$ è invariante per cambi di segno di $y$ e la funzione $y^3$ è dispari in $y$ allora $\int int int_V y^3dxdydz=0$, per cui l'integrale si riduce a $2\int int int_V1dxdydz$ ovvero il doppio del volume di $V$. Usando i $z$-strati ...
2
13 giu 2023, 18:54

itisscience
data la reazione $ K^-)+p->\Omega^-) +K^+ +K^0 $ ho trovato l'energia cinetica minima del K- affinchè avvenga ossia 2.7GeV. poi mi si chiede di calcolare, nella stessa configurazione, il $ \gamma $ del centro di massa. non riesco ad ottenere iil risultato ossia $ \gamma=1.55 $ . in particolare io faccio: $ \gamma=1/{√1-\beta^2 $ in cui $ \beta=P/E $ dove l'impulso totale è la somma di $ p_{K-}=√E_K^2-m_k^2 $ e analogo per il protone, invece l'energia totale è la somma dell'energia cinetica del k- e del ...

Angus1956
Sia $D={(x,y)inRR^2|x^2+y^2<=3,y<=abs(x)}$. Scrivere $\int int_D f(x,y)dxdy$ per mezzo di fili verticali e fili orizzontali. Sia $ninNN$ e $f_n(x,y)=1/(1+x^2+y^2)^n$, calcolare mediante coordinate polari $\int int_D f_n(x,y)dxdy$ e mostrare che $lim_{n->+infty}\int int_D f_n(x,y)dxdy=0$. Infine dire come si poteva ottenere questo risultato senza fare calcoli. $y$-fili: $\int_-sqrt(3)^-sqrt(3/2)(\int_{-sqrt(3-x^2)}^{sqrt(3-x^2)}f(x,y)dy)dx+\int_-sqrt(3/2)^0(\int_{-sqrt(3-x^2)}^{-x}f(x,y)dy)dx+\int_0^sqrt(3/2)(\int_{-sqrt(3-x^2)}^{x}f(x,y)dy)dx+\int_sqrt(3/2)^sqrt(3)(\int_{-sqrt(3-x^2)}^{sqrt(3-x^2)}f(x,y)dy)dx$ $x$-fili: $\int_-sqrt(3)^0(\int_{-sqrt(3-y^2)}^{sqrt(3-y^2)}f(x,y)dx)dy+\int_0^sqrt(3/2)(\int_{-sqrt(3-y^2)}^{-y}f(x,y)dx+\int_{y}^{sqrt(3-y^2)}f(x,y)dx)dy$ Ponendo $x=rcos(\theta),y=rsin(\theta)$, abbiamo che l'integrale diventa $\int_{-5/4pi}^{pi/4}(\int_0^{sqrt(3)}r/(1+r^2)^ndr)d\theta={(9/4pi,if n=0),((3ln(4))/2,if n=1),(3/2pi(1/(2*(1-n)*4^(n-1))-1/(2(1-n))),if n>1):}$ E si ha che ...
2
13 giu 2023, 18:39

FST1
Salve, stavo leggendo questo post: https://www.matematicamente.it/forum/ra ... t7945.html E mi è sorto un dubbio. Qui viene detto che il rango è 2 perchè il determinante di un minore al suo interno è diverso da 0. Studiando le lezioni del mio professore, viene invece spiegato che questo vale se quel minore fosse un minore fondamentale, ovvero, se il minore ha determinante != 0 e se ogni suo orlato ha determinante =0. Come mai in questo caso non è stato necessario trovare un minore fondamentale?
1
16 giu 2023, 20:46

w3ns-votailprof
Salve a tutti, sto risolvendo questo problema in cui si chiede di trovare l'impedenza $ Zc $ da introdurre in parallelo al condensatore per ottenere il massimo trasferimento di potenza. so che per ottenere il massimo trasferimento di potenza dovrà essere: $ -j10 p Zc = 10 - j5 $ dove $ p $ sta per parallelo ponendo $ Zc = R + jX $ imposto l'equazione $ (-j10*(R + jX))/(R + jX - j10) = 10- j5 $ è corretta l'impostazione o esiste un metodo più "semplice"? grazie.
3
16 giu 2023, 09:28

SteezyMenchi
Stavo risolvendo l'integrale: $I = int_{-infty}^{\infty}\frac{x}{2e^x + 3e^{-x}}dx$ Dopo pagine e pagine di conti sono arrivato alla seguente espressione (che so essere corretta per fortuna): $2I + \frac{i\pi^2}{2\sqrt(6)} = 2\pi i Res(f, z = i\pi/2 + 1/2log(3/2))$ Io ho provato a calcolare il residuo con la formula: $Res(f,a) = \frac{1}{(1/f(z))'|_{z = a}}$ Dopo una marea di calcoli non sono arrivato a nulla di accettabile. C'è per caso qualche altro modo per calcolare sto mostro (per favore non deludetemi ) oppure mi devo metter giù a testa bassa e rifare tutti i calcoli? Spero vivamente in una risposta ...
4
14 giu 2023, 01:05

SteezyMenchi
Vorrei avere alcune conferme su come ho risolto questo esercizio, e se possibile, una vostra versione della soluzione dell'esercizio. Data la PDE $\partial_t f(x,t) = \partial_{x x}^2f- \partial_xf-f$ con $x$ sulla retta ($x \in \RR$) e condizione iniziale $f(x,0) = \frac{e^{-x^2 / 2}}{\sqrt(2\pi)}$. Determinare l'espressione generale $f(x,t)$ Passo in trasformata di Fourier (da adesso in poi il coefficiente $1 / (\sqrt(2\pi))$ lo chiamerò $beta$ e ometto gli estremi di integrazione noti): $f(x,t) = \beta \int e^{ikx}\hat{f}(k,t)dk, \hat{f}(k,t) = \beta \int e^{-ikx'}f(x',t)dx'$. Saltando ...
3
15 giu 2023, 21:19

Raz1
Buonasera, avrei bisogno di una mano con un esercizio riguardante un piano inclinato Il testo recita: Un punto di massa \(\displaystyle m_1 \) si muove con velocita' \(\displaystyle v \) su un piano orizzontale. Ad un certo punto, esso inizia a salire lungo un piano inclinato di massa \(\displaystyle m2 \) libero di muoversi. Calcolare: 1) la quota massima raggiunta dal punto 2) la velocita' del piano inclinato 3)la velocita' finale del punto e del piano dopo che il punto e' tornato sul ...