Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Silente
Buonasera, chiedo un aiuto per essere indirizzato su cosa andarmi a studiare e dove. Vi spiego dove vorrei arrivare... Definiamo $\mathcal{B}$ come lo spazio delle funzioni buone, ovvero funzioni $F$ definite su tutto l'asse reale, infinitamente differenziablii e tali che $F(x)=o(x^{-N})$ per $x\to\infty$ per qualsiasi $N$. Poi, ho una famiglia di funzioni $\{f_n(x)\}_{n\in\mathbb{N}}$ infinitamente differenziabili e nulle fuori da $[a,b]$, con le quali ...
5
11 giu 2023, 19:13

Angus1956
Nel mentre che facevo esercizi di topologia mi è venuto in mente che poteva essere utile usare il seguente fatto (probabilmente noto a molti, molto intuitivo però non sapevo se fosse matematicamente vero e quindi ho provato a dimostrarlo): Sia $f:X->Y$ un omeomorfismo, definiamo su $X$ una relazione di equivalenza $∼_1$ e su $Y$ una relazione di equivalenza $∼_2$ tali che $x_1∼_1x_2$ (in $X$) se e solo se ...
5
18 giu 2023, 19:50

BlackCrow_ita
Ciao ragazzi, oggi vi chiedo due esercizi: sul primo non saprei, sul secondo invece ho tentato di risolverlo e spero sia venuto bene.. Esercizio 1 Siamo dati: $f(x)$ polinomio di grado $n\in N$ a coefficienti reali. $x_0,x_1$ due punti reali e $p_0(x)$ e $p_1(x)$ i polinomi di Taylor di grado $n$ di $f(x)$, di centro $x_0$ e $x_1$ rispettivamente. Si provi che $p_0(x)=p_1(x), \forall x\in R$ Esercizio ...

mary98scc
Ciao a tutti, sto studiando per l'esame di automazione e sono arrivata all'argomento della regolazione lineare quadratica(LQR) e non riesco a capire un concetto e vorrei il vostro aiuto. La formulazione matematica del problema utilizza come indice di performance la funzione di costo quadratica seguente: $\idehat{J}(X, U)= 1/2\sum_(K=0)^(N-1)(x_k^(\top) Q x_k + u_k^(\top)R u_k) + 1/2 x_N^(\top) Q x_N$ So il significato dei tre termini, ovvero che uno penalizza la deviazione dello stato desiderato, uno penalizza lo sforzo di controllo e l'altro penalizza la deviazione ...
1
21 giu 2023, 19:37

CptKeg
Ciao ragazzi! Ho da condividere con voi un esercizio di esame che non sono riuscito a fare.. Due pendoli semplici aventi identica lunghezza di l=1 sono inizialmente mantenuti fermi nelle posizioni indicate in figura(Un pendolo è spostato verso sinistra, mentre l'altro sulla verticale). Il pendolo di sinistra è ad altezza h=10cm. Il pendolo di sinistra, recante una pallina di massa pari a 200g viene quindi lasciato libero e urta elasticamente il pendolo di destra, recante una massa di 100g. ...

Bho76
Salve sto avendo problemi nella risoluzione di questo numero complesso che devo rappresentare le sue radici quadrate nel piano di Gauss ho provato a svolgerlo e ho fatto: $ i^83=-i $ $ i^9=i $ alla fine svolgendo i calcoli mi trovo che: $ (1+i)/((2i)^58-i)=(1+i)/(i-2^58 $ essendo i^58=-1. Da qui in poi non so come andare avanti per arrivare a calcolare le radici quadrate attraverso la trigonometria cioe con $ sqrt(z) =sqrt(p)(cos((vartheta +2kpi)/2)+i*sin((vartheta +2kpi)/2)) k=0,1 $
4
21 giu 2023, 11:24

frapp1
Buongiorno a tutt*, al corso di Complementi di Elettromagnetismo abbiamo affrontato il concetto dei potenziali ritardati. Mi sono perso nello svolgimento del calcolo della divergenza del campo $ vec(A) $, in particolare al punto in cui bisogna integrare per parti. Queste sono le premesse: $ \vec{A}=\mu /(4pi) \int ([\vec{J(\vec{r'})}])/(R)dV' $ $ R=|vec(r)-vec(r')| $ $ grad\cdot vec(A)=mu/(4pi) int(grad_r (1/R)\cdot vec(J)+1/R(partial vec(J)) /( partialt )\cdotgrad_r (-R/c))dV' $ So che per prima si passa da $grad_r$ a $grad_r'$ e poi si integra per parti arrivando al risultato (in cui si è ...

carolapatr
Supponi di versare dell'acqua in un contenitore fino a che essa non raggiunge un'altezza di 12 cm. In seguito, versi lentamente uno strato di 7.2 cm di olio d'oliva, in modo che galleggi sulla superficie dell'acqua. Calcola la pressione sul fondo del contenitore. [$1.03*10^5 Pa$] Tentativo di svolgimento ptot = p acqua + p olio ptot = $[po + d1*g*h1] + [po + d2*g*h2]$ ptot = $[1.01*10^5+10^3*10*0.12] + [1.01*10^5+920*10*0.072] = 2.04*10^5 Pa$ Credo sia un errore di calcolo e non di concetto da parte mia ma non riesco a capire dove sia

carolapatr
Non sapevo come risolvere il primo punto per cui ho fatto un tentativo, ho provato a sommare la pressione del primo liquido giallo alla pressione del secondo liquido, il verde, ma è uscito un numero abnorme. p giallo = 10^5 + (1380*10*0.06) Ho usato 0.06 m che è la massima altezza possibile per questa colonna di liquido che non riesce ad estendersi sino ai 6 cm a partire dal fondo o, che dir si voglia, sino ai 12 cm partendo dal pelo del liquido. Non so se sia stata una ...

carolapatr
La figura rappresenta una sferetta di massa m = $3.15*10^-3$ kg e di carica elettrica q, in quiete su un piano inclinato di 30°, in assenza di attrito. La sferetta è immersa in un campo elettrico uniforme di modulo E = $4.45*10^4$ N/C diretto orizzontalmente da sinistra verso destra. Determina il valore di q. Svolgimento Se il corpo è in quiete allora Fex + Fp parallela = 0 Fex = - Fp parallela Fex = - $[Fp * sin(30°)]$ $4.45*10^4 * q = [3.15*10^-3 * 10 * sin(30°)]$ q = - $3.5*10^-7$ C Mi dareste ...

J3rry
Dato il sistema lineare di $ n = (2L+1)^2 $ equazioni, dove l'equazione $pq$ (con $p,q = -L,...,L$) è: $\sum_{m = -L}^{L}\sum_{n = -L}^{L}f_{mn}\int\int_Uv_{pq}(u)v_{mn}(u)du = \int\int_UF_d(u)v_{pq}(u)du<br /> $ con $u=(u_1, u_2)\inRR^2$ e $v_{mn}(u) = \mbox{sinc}\left(\frac{\omega_1u_1}{\pi}-m, \frac{\omega_2u_2}{\pi} -n\right) $. Definiamo poi il tensore $ \mathbf{S} $ a quattro dimensioni (spero sia giusto il lessico matematico) di elementi $ S_{mnpq} = \int\int_Uv_{pq}(u)v_{mn}(u)du $ e la matrice $ \mathbf{s} $ di elementi $ s_{pq} = \int\int_UF_d(u)v_{pq}(u)du $. Per risolvere il sistema di variabili $ f_{mn} $ pensavo di rendere la matrice di elementi $ f_{mn} $ un ...
4
13 giu 2023, 10:27

Angus1956
Sia $C= {(x, y, z)inRR^3 | max{|x|, |y|, |z|} ≤ 1}$, munito della topologia indotta dalla topologia euclidea. Sia $∼$ la relazione di equivalenza su $C$ data da: $(x_1, y_1, z_1) ∼ (x_2, y_2, z_2)$ se $max{|x_1|, |y_1|, |z_1|} = max{|x_2|, |y_2|, |z_2|} = 1$ e dalle relazioni imposte dalla riflessività, simmetria e transitività. Mostrare che il quoziente $C// ∼$ è omeomorfo a $S^3$. Allora abbiamo che $C$ è il cubo pieno e la relazione di equivalenza è tale che se due punti si trovano su una delle sei facce del cubo ...
1
17 giu 2023, 20:11

BlackCrow_ita
Salve a tutti, avrei bisogno di chiarire, il prima possibile altrimenti non ci dormo la notte, una questione che mi attanaglia assai. Tra i quesiti degli scritti di analisi 1 osservo che viene frequentemente richiesto di dimostrare (o sulla falsa riga di questa richiesta) quante radici abbia una funzione o che una equazione abbia esattamente tot numero di radici. Per rendere più chiaro il tutto riporto due esercizi più o meno tipici così da farvi capire cosa intendo. a) Dimostrare che ...

ton32
buonasera a tutti! Qualcuno potrebbe spiegarmi come si calcola il fasore di un generatore di corrente/tensione in forma cartesiana? ad esempio $e(t)=sqrt(2)*100 cos(omega t+pi/3)$ $a(t)=sqrt(2)*10 cos(omega t)$ $a(t)=50 cos(omega t)$ che procedimento bisogna fare? grazie a chi risponderà
1
20 giu 2023, 22:08

GiaSal
Buonasera. Vorrei fare delle simulazioni di fisica (livello scuola superiore) come quelle di Phet. E' possibile farle con MatLab ? Grazie.
1
20 giu 2023, 17:21

apprendista_stregone
Buonsalve a tutti. Premettendo di essere un pesce fuor d'acqua in questo forum, poichè non studio fisica o scienze in generale, però sono quasi certo che qualcuno tra voi saprà rispondere ad una curiosità che ho da diversi anni e per cui non ho trovato risposta. Mi ero iscritto in palestra prima del covid e durante la pandemia mi sono allenato a casa usando boccioni d'acqua anziché i manubri e piastre in ghisa. La domanda è: perché si ha una percezione diversa dello stesso carico (ad es. ...

alessioben
Ciao, l'esercizio chiede di determinare il Sup dell'insieme E così definito $ E={abs(z) : z in C , (4z)/(1+z^2) in Z } $ Non so proprio da dove partire
3
19 giu 2023, 19:04

rsmanio
Ciao a tutti! Ho provato a risolvere questo esercizio, ma c'è qualcosa che non mi torna nello studio del secondo integrale. L'integrale è il seguente: $\int_{1}^{+\infty} \frac{1-\cos(x)}{(\sqrt(1+x^2)-1)arctan(\sqrt(x))} dx$ La soluzione proposta dalla pagina da cui ho preso l'esercizio è: L'unico modo per portare a casa l'esercizio è mostrare che la funzione integranda è un o-piccolo di $\frac{1}{x^{\alpha}$ con $0<\alpha<1$. Nel nostro caso si può dimostrare che: $lim_{x \to +\infty} \frac{\frac{1-\cos(x)}{(\sqrt(1+x^2)-1)arctan(\sqrt(x))}}{\frac{1}{\sqrt(x)}}=0$ Poiché la funzione integranda è un o-piccolo ...
11
14 giu 2023, 12:24

mbistato
Salve, sto cercando di analizzare questa situazione: ho una massa attaccata ad un pistone oleodinamico inizialmente fermi che vanno a urtare un'altra massa posta più avanti e inizialmente ferma. Dopo l'urto non solo le due masse rimangono attaccate ma il pistone continua la corsa esercitando una spinta costante. Il problema è capire come la forza esercitata dal pistone fino alla fine del moto possa incidere sulla velocità dopo l'urto e quale principio fisico regola la suddetta ...

CormJack
Question: I want to clarify my understanding of the basics of OLS regression in matrix form. Let's assume we have 2 different independent variables $x_1$ and $x_2$. Our 'model' will be the plane that lives in $\mathbb{R^3}$ that minimises the sum of squared distances between each point on the plane corresponding to observations of our pair of independent variable points $x_{1i}$ & $x_{2i}$ and the corresponding point $y_i$. These ...
1
19 giu 2023, 23:13