Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

Ragazzi ho la seguente equazione differenziale
$omega=(y+(2x)/(x^2+y+1))dx+(x+(1)/(x^2+y+1))dy$
Facendo le derivate parziali in croce si nota che sono uguali, quindi la forma differenziale è chiusa.
Adesso sto facendo il calcolo della primitiva calcolando $int beta(x,y)=xy+ln(y+x^2+1)+c(x)$ , poi l'ho derivato rispetto alla variabile $x$ e l'ho posto uguale ad $alpha(x,y)$ per trovarmi il valore di $c(x)$.
Il valore di $c(x)$ mi viene uguale a $0+k$, essendo $c'(x)=0$.
Una ...

Sia f (x, y) = x^2 − 2xy + 3xy^2 + y,
quale dei seguenti punti appartiene alla curva di livello che passa per
(0, 3)?
I punti sono: (1,0), (2,0), 3, (1,1)
La soluzione è (1,1)
Non riesco a capire come procedere dopo aver impostato f(x,y)=k
Grazie

salve a tutti, volevo semplicemente chiedervi se eravate in grado di risolvere questa serie:
Dire l'insieme degli x $in$ [-1,1] per i quali la serie converge
$\sum_{k=1}^oo(1-cos(x^n))/(n+1)$
io direi che per x $in$ ]-1,1[ la serie per n grande tende asintoticamente alla serie $\sum_{k=1}^oo0$ che è convergente e quindi hanno lo stesso carattere
mentre per x=-1 e x=1 la serie per n grande tende asintoticamente alla serie $\sum_{k=1}^oo(1/n)$ che è divergente e quindi hanno lo stesso ...

Ciao a tutti.
Studiando il limite $lim_(xto0^+)logx/sqrt(1+2log^2x)$ mi sono imbattuto in un problema alquanto elementare, che però mi ha messo in difficoltà
Vi posto la soluzione completa:
Opero la sostituzione $y=logx$
$lim_(xto0^+)logx/sqrt(1+2log^2x)=lim_(yto-oo)y/sqrt(1+2y^2)$
E ancora $z=-y$
$lim_(yto-oo)y/sqrt(1+2y^2)=lim_(zto+oo)(-z)/sqrt(1+2(-z)^2)$
Ora il passaggio finale CORRETTO
$lim_(zto+oo)(-z)/sqrt(1+2z^2)=-lim_(zto+oo)z/sqrt(1+2z^2)=-lim_(zto+oo)sqrt(z^2/(1+2z^2))=-1/sqrt(2)$
Ecco, quello che non capisco è perché, nell'ultimo passaggio non possa fare una cosa del genere:
$lim_(zto+oo)(-z)/sqrt(1+2z^2)=lim_(zto+oo)sqrt((-z)^2/(1+2z^2))=lim_(zto+oo)sqrt(z^2/(1+2z^2))=1/sqrt(2)$
Help

Ciao a tutti. Un esercizio di esame di Analisi II chiede di risolvere il seguente integrale:
$ int int int_(E)z dx dy dz $
Con $E={(x, y, z) : (x − 2z)^2 + (y − x)^2 ≤ 1, x + y + 2z = 1}$
Ora anche ponendo $u=x-2z, v=y-x, w=z$ il dominio diventa
$E_1={u,v,w): u^2+v^2<=1, 2u+6w+v=1}$
Non riesco comunque a risolvere l'integrale. Avete delle idee?

vorrei sapere se qualcuno è in grado di spiegarmi queste soluzioni proposte da wolfram
$z^4-16i=0$
dice che sono un passaggio immediato:
$z=-2*root(8)(-1)$
$z=2*root(8)(-1)$
$z=-2*(-1)^(5/8)$
$z=2*(-1)^(5/8)$

Ciao a tutti, non mi sono chiari un paio di passaggi in cui viene maggiorato un prodotto di convoluzione:
\( |z_n(x)\rho_n\ast \overline {u(x)}|\leq \int_{\mathbb{R}^n }|\rho_n(x-y)||\overline {u(x)}| dy
\leq \| u \|_{L^p}\int|\rho_n(x-y)|dy=\| u \|_{L^\infty } \)
dove:
$z_n$ è una successione di funzioni di classe $C^\infty $ a supporto compatto che assume valori compresi tra zero e uno
$\rho_n$ è una successione di identità approssimanti
$u(x)$ è una ...

Ciao a tutti.
Ho un esercizio dato dal professore che recita:
"Consideriamo l'insieme A tutti i numeri naturali minori o uguali di un dato valore N diverso da 0. Per a, b in A poniamo aRb se e solo se a, N hanno lo stesso minimo comune multiplo di b, N. Si provi che R è una relazione di equivalenza. Se ne descrivano le classi per N=10 e per N=12.
Si riesegua lo stesso esercizio con il massimo comune divisore al posto del minimo comune multiplo."
Ora, per il mcm è stato facile, perché mi ...

La serie $ X^n / (1+ X ^2n) $ converge totalmente in $ [ 2 ,3 ] $ ?
Per trovare Mn è giusto fare la derivata del modulo e vedere il punto di massimo della derivata ed infine metterlo al posto della x?
Il massimo mi da 0. Quindi mettendolo al posto della x ottengo 0 /1 =0 , ergo non converge totalmente in $ [ 2 ,3 ] $ ?


$ x^2y''-y'+2y=(x+2)e^x $
Cerco le soluzioni del tipo $ x^n$ , ma non riesco a risolvere l'omogenea.

Ciao ragazzi, devo stabilire se la seguente forma differenziale è esatta e se lo è devo calcolarne una primitiva:
$omega=(2(x-y))/(1-(y-x)^2)dx+(2(x-y))/(1-(y-x)^2)dy$
La prima cosa da fare è definire il dominio giusto ? E l'unica condizione da imporre è che il denominatore (lo stesso per entrambi i coefficienti della forma differenziale) sia $ne$ da 0.
Quindi sarebbe $1-(y-x)^2 ne 0$ ovvero $-x^2-y^2+2xy+1 ne 0 $
Quindi questa condizione adesso devo riscriverla in qualche altro modo ? O la lascio semplicemente così ...

Ciao a tutti, ho un ennesimo problema nel capire un esercizio.
Sia $f: R -> R$ una funzione derivabile quattro volte tale che:
$f(x)=2+(x-1)^3+o((x-1)^3)$ per $x->1$
Allora si ha:
(1) il punto $x=1$ è un punto di massimo per $f$[/list:u:19176d8y]
(2) il punto $x=1$ è un punto di minimo per $f$[/list:u:19176d8y]
(3) il punto $x=1$ è un punto di flesso per $f$[/list:u:19176d8y]
(4) nessuna delle ...

classificare i punti critici della funzione $ f(x,y)=x^2y+1 $
trovare massimo e minimo assoluto della funzione in $ A={x^2+y^2<=y} $
per quanto riguarda la classificazione dei punti critici, ci siamo, venuva l'Hessiano nullo ed ho risolto applicando la definizione di massimo e minimo e mi viene (0,y) tutti punti di minimo relativo.
Per quanto riguarda il secondo punto credo di aver commesso qualche errore:
$ y^2-y-x^2=0 $ la ho considerata come l'unione di due curve ...

Ciao ragazzi, mi sapreste dire come si risolve una equazione differenziale del primo ordine del genere ?
$y'=(2y+4x+1)/(y-x+2)$

Salve, ho questa eq. differenziale di cui, fra le altre cose, devo determinare il grafico.
L'eq. è questa:
\(\displaystyle y' = \frac {3t^{2} +4t+2}{2(y-1)} \)
Di cui ho:
trovato il dominio che è nella forma \(\displaystyle RXR* \), dove \(\displaystyle R* := R - \) {\(\displaystyle 1 \)}, non essendo del tipo \(\displaystyle IXR \) non vale l'unicità globale, ma solo quella locale; non ci sono solv. stazionarie;
E' a variabili separabili e la solv generale è : \(\displaystyle y(t) = 1 \pm ...

Salve, sto studiando il teorema di Waistrass. Vorrei sapere se è giusto dire che:
Se M è il massimo di una funzione allora f(x) > M

$f(x)=(e^(3x^2))/sqrt[x^2-1]$
la derivata mi viene $[xe^(3x^2)(6x^2-7)/sqrt(x^2-1)]/(x^2-1)$
però poi ho dei problemi con i massimi e minimi quindi vorrei sapere se è corretta.
Grazie!

Ragazzi mi aiutate a trovare la soluzione particolare dell'equazione differenziale non omogenea del seguente problema di Cauchy?
$\{(y''-y'-6=sin x),(y(0)=0),(y'(0)=1):}$
Ho trovato già la soluzione generale dell'equazione omogenea associata considerando il polinomio caratteristico
$ \lambda^2 - \lambda = 0 $ ----> $y_0(x)=a + b e^x$ (essendo $\lambda_1=0$, $\lambda_1=1$)
Fin qui credo sia giusto, adesso non so come continuare.

Dopo aver dimostrato che esiste finito, mi si chiede di calcolare questo integrale, però non so da dove iniziare
\( \int_{0}^{\pi} \frac{1}{cos^2x + sen(2x) + 1}\, dx \)