Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Ho un dubbione...
Con alcuni amici stiamo cercando di capire se possiamo riuscire a misurare l'accelerazione laterale di un motoveicolo tramite un accelerometro.
Un motoveicolo mentre curva è in piega e agiscono la forza peso (che da sola farebbe "cadere" la moto in interno curva) e la forza centrifuga (laterale, che da sola farebbe tornare la moto dritta). Se la moto non cambia incli nazione, queste due forze (applicate al baricentro del sistema moto+pilota) avranno una risultante che ...

Vorrei sottoporvi alcuni esercizi sui limiti che non riesco a svolgere o su cui ho dei dubbi.
[tex]\displaystyle\lim_{x \rightarrow +\infty } \left( \frac{x+4}{2x+1}\right)^{x}[/tex]
Ho pensato di raccogliere [tex]x[/tex] al numeratore ed al denominatore ottenendo:
[tex]\displaystyle\lim_{x \rightarrow +\infty } \left( \frac{x(1+\frac{4}{x})}{x(2+\frac{1}{x})}\right)^{x}[/tex]
Da cui
[tex]\frac{1}{2}^{+\infty}= 0[/tex]
Non sono però sicuro della conclusione che ho tratto. ...

Buona sera a tutti! è la prima volta che utilizzo questa forum, spero mi possiate aiutare come spero di poter aiutare anche io voi..
ho un problemino che probabilmente riuscirete a risolvere con molta facilità...
Ho un testo che dati tre punti P (1, 2, 0), Q (2, 0, -1) e R (1, 0, 1), mi chiede:
a) trovare il piano che contenga P, Q, e R
b) trovarel'equazione cartesiana di una retta passante per l'origine e perpendicolare al piano conoscendo
c) calcolare l'area del triangolo di ...

Non riesco a studiare il carattere di questa serie:
$sum_(n=1)^(+oo) sqrt(n)*(e^(1/(n^2+n))-1)*x^n$ con $x in RR$
Per prima cosa ho notato che non è a termini positivi,
in secondo luogo se non mi sbaglio non si può applicare Leibnitz I perchè non ha segno alterno (cioè $(-1)^n$ davanti) ma è variabile...
Sto provando un po'di tutto ma senza grossi risultati.
Grazie

Ho provato a risolverlo... ma la soluzione non coincide.
Vi faccio vedere sin dove riesco ad arrivare:
$ int sqrt(1+x^2)dx = int (t^2+1)/(2t) * (t^2+1)/(2t^2)dt= int (t/2 + 1/(2t^3) + 1/t)dt= 1/4t^2 - 1/(4t^2) + logt + c $
$ sqrt(1+x^2)=t-x $ , $ t=x+sqrt(1+x^2) $ , $ x=(t^2-1)/(2t) $
$ dx = (t^2+1)/(2t^2)dt $
$ sqrt(1+x^2)=t-(t^2-1)/(2t)=(t^2+1)/(2t) $
la soluzione dovrebbe essere:
$ 1/2(xsqrt(1+x^2)+log(x+sqrt(1+x^2))+c $
purtroppo, effettuando la sostituzione finale, non mi ci ritrovo... dove sbaglio?
Grazie

[tex]\sum_{n=1}^{+\infty} \sqrt{n}(1-\cos(\frac{1}{n}))[/tex]
Dovrebbe essere una serie a termini di segno variabili, ho pensato che forse si può fare una minorazione.
[tex]|\sqrt{n}(1-\cos(\frac{1}{n}))|\geq|\cos(\frac{1}{n})|[/tex]
La serie minorante non verifica la condizione necessaria alla convergenza delle serie, dunque per il criterio del confronto la serie di partenza dovrebbe divergere ...

non riesco a risolvere questo problema!
un sistema è costituito da 4 corpi puntiformi di massa uguale ad m e da 4 sbarre rigide uguali ciascuna di massa M spessore trascrabile e lunghezza pari a 2d.(viene fuori un quadrato).il sistema è posto in un piano ed è libero di ruotare attorno ad un asse perpendicolare a questo piano,passante per una delle quattro masse puntiformi m!(con velocita angolare W costante).calcolare l energia cinetica del sistema rispetto a un sistema di riferiment ...

In alcuni esercizi si chiede di determinare quali sono i punti di flesso di una funzione senza studiare il segno della derivata seconda.
Ora io non so, se per farlo bisogna studiare la derivata prima e vedere la monotonia, cioè se io so che la funzione è crecente ad esempio per [tex]x1[/tex] allora posso dire che in [tex]x=1[/tex] si avrà un flesso?
Un mio amico a suo tempo mi aveva detto che credeva bisognasse vedere dove, calcolando con la definizione la ...
ciao a tutti, è la prima volta che scrivo nel forum per cui se qualcosa non è chiaro, chiedo già scusa a priori.
mi sono imbattuta nei test universitari e ad un certo punto trovo un quesito che onestamente non mi è molto chiaro:
il sistema
$\{(x=y+3),(4x-7y=0):}$ implica che $2x-y=10$
cosa vuol dire; mi sfugge qualcosa ma non riesco a capire cosa....
qualcuno potrebbe aiutarmi? grazie

Scusate, probabilmente quello che vi chiedo è una banalità, ma non sono mai riuscita a capire bene. Devo risolvere la seguente equazione:
$ log^2(x) - log(x^2)-3=0 $
dove $log$ è il logaritmo naturale. So che si potrebbe risolvere trasformando i logaritmi in esponenziali. Ed è proprio questo che non capisco. Potreste aiutarmi? Se esistono altri metodi di soluzione potete mostrarmeli? Però vorrei soprattutto vedere e capire la trasformazione in esponenziale.
Ps: so che ...

Salve, non ho ben capito come effettuare la diagonalizzazione (il libro non mi aiuta), per fortuna ho trovato un esercizio che ho fatto con la prof.:
è lo studio del seguente endomorfismo $f: RR_3[x] -> RR_3[x]$
$a_0+a_1x+a_2 x^2+a_3 x^3 -> (a_0+a_3)+a_2x+a_1x^2+(a_0+a_3)x^3$
trovo la matrice associata rispetto alla base canonica, nucleo ed immagine e arrivo al punto in cui dice di diagonalizzare $f$ (se possibile ovviamente)
quindi procedo calcolando il determinante del polinomio caratteristico ($A-lambdaI_4$) e trovo gli ...

Ciao a tutti, sono una mamma...disperata.....ma è possibile che non riesca ad uscirne fuori da questo quesito????
In un trapezio isoscele le diagonali sono perpendicolari ai lati obliqui, i quali sono i [tex]5/3[/tex] delle rispettive proiezioni sulla base maggiore, la quale misura [tex]50 \text{cm}[/tex].
1. Determinare l'area ed il perimetro del trapezio.
2. Determinare l'area ed il perimetro del triangolo isoscele ottenuto dal prolungamento dei lati obliqui.
E' un problema dato al ...
Dalla teoria so che esiste un unica applicazione lineare di V in W (e dunque in particolare un unico endomorfismo di V in V), con V e W spazi vettoriali, se conosco le corrispondenti immagini dei vettori di una base di V.
Ma, quando ne esistono infiniti?

l'esercizio incriminato è il 2 (punto 3), non riesco a riportarlo perchè è troppo lungo:
http://www.math.unipd.it/~marson/didatt ... 0/app2.pdf
premetto che avevo postato un problema simile un po' di tempo fa( https://www.matematicamente.it/forum/sol ... 61156.html ), al quale mi avevano risposto gugo82 e dissonance. solo che stavolta anzichè avere un sistema di ordine 1, ce l'ho di ordine 2.
nella soluzione all'esercizio ( http://www.math.unipd.it/~marson/didatt ... orapp2.pdf ), ho visto che sfrutta anche stavolta il fatto che le soluzioni sono localmente lipschitziane ($C^1$) in ogni ...
Problemi Geometria Teorema Di Pitagora Aiuto Ringrazio In Anticipo
Miglior risposta
NN RIESCO A FARE I 2 PROBLEMI MI AIUTATE GRAZIE
N 1
La somma dei cateti di un triangolo rettangolo è congruente a 7/8 del perimetro del quadrato di area 196 dm2 e il loro rapporto è 4/3.Calcora il perimetro e l'area del triangolo RISULTATO 2p=84dm A=294dm2
N 2
In un rettangolo la diagonale è congruente a 5/4 dell'altezza e la somma delle due misura 216cm.Calcola il perimetro e l'area del rettangolo RISULTATO 2p=336 A=6912
RINGRAZIO IN ANTICIPO GRAZIE MILEEEEEEEEEEE

Propongo un esercizietto in teoria dei campi, per chi avesse voglia di cimentarsi.
Prove it! Sia [tex]F[/tex] un campo finito e sia [tex]K[/tex] una sua estensione finita. Dimostrare che [tex]K[/tex] è un'estensione semplice, ossia che [tex]K = F[\alpha][/tex] per qualche [tex]\alpha \in K[/tex].
[size=75]edit: aggiunta una dimenticanza. Grazie a Martino (vedi più sotto)[/size]

Ciao, ho un dubbio che mi sta consumando non lo ricordo proprio e non lo trovo più:
sono nel campo dei complessi, se ho la matrice $A= ( ( 0 , i ),( -i , 0 ) ) $, com'è la matrice $bar(A)$?
non capisco se è negata o coniugata
Grazie in anticipo!

Ciao a tutti, ho un piccolo problema di geometria da sottoporvi.
Supponiamo di avere un piano che interseca un sistema di assi cartesiani e sia passante per l'origine. Trascuriamo il settore per Z positive e supponiamo che il piano "salga" da Z negativi. Supponiamo di conoscere:
a) gli angoli che gli assi X e Y (le proiezioni) formano con questo piano, per semplicità diciamo 10° ambedue;
b) l'angolo orizzontale, giacente entro il piano definito dagli assi X e Y, che la direzione di ...

$ int_(1)^(2) x^2 root()(x^2+16) dx $
Questo è l'integrale che devo risolvere.
Per risolvere integrali di questo tipo il libro suggerisce due diverse sostituzioni in base all'esponente dell'incognita x che è fuori dalla radice: se l'esponente è pari $ x=a*sinht $(con a = 4 in questo caso) altrimenti se l'esponente è dispari c'è la sostituzione radicando = t.
a me non viene,in quanto abbiamo fatto solo esercizi con un esponente pari uguale a ZERO vi prego aiuto
Sono ancora alle prese con con i teoremi di esistenza e unicita delle EDO.
Il seguente: $ y' = txe^(-ty^2)$ con $y(0)=1$
Soddisfa le ipotesi del teorema di esistenza ed unicità delle soluzioni. Inoltre, essendo $f(t,x,y)=txe^(-ty^2)$
in ogni striscia $S= [0,a] * R ^2$ si ha $|f(t,x,y)|<=a|x|$ Quindi, in base al teorema di esistenza e unicita globale, la soluzione è
è indefinitamente prolungabile in R (a destra di t=0, che è quello che si chiede).
Qualcuno ...