Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Angus1956
Classificare le singolarità della funzione $f(z)=z/sin(z)$, dire cioè se si tratta di singolarità rimovibili ( in tal caso dire quale valore va dato alla funzione affinchè risulti olomorfa in quel punto), poli (in tal caso dire di che ordini) o singolarità essenziali. Abbiamo che $f(z)=(2ize^(iz))/(e^(2iz)-1)$, se sviluppiamo la funzione in serie di Taylor in un intorno di $0$ otteniamo $(2iz)/(2iz)=1$ quindi $0$ è una singolarità rimovibile e il valore che va dato alla ...
5
15 giu 2024, 23:14

CptKeg
Buonasera, volevo esporvi una cosa su cui mi blocco sempre e vado a "tentativi" solitamente. In tutti gli esercizi che mi capitano in cui sono necessari gli angoli, io dovrei ragionare in termini di triangoli rettangoli secondo il mio professore. Purtroppo però quando devo scomporre le componenti di una forza o se devo semplicemente capire a quale angolo dato corrisponde un altro angolo nel sistema, mi perdo totalmente. Vi metto in allegato un esercizio per rendere più chiaro il mio ...

Romi23_304
Ho un dubbio sull'appartenenza di f=/frac{x}{(1+x^2)} a L^1. In un tema d'esame, viene chiesto se questa funzione appartiene all'intersecazione di L^1(R) e L^2(R). Nelle risposte dice che appartiene a L^2 ma non a L^1. Che appartiene a L^2 non ho problemi ma mi esce he dovrebbe anche appartenere a L^1 essendo che l'integrando tende a zero a + e - infinito ed e limitato nel resto dell'intervallo di definizione. Grazie in anticipa a chi riuscirebbe a chiarirmi le idee.
2
15 giu 2024, 18:26

Angus1956
Calcolare $phi(R)= \int_{\gamma}z/(e^z-e^-z) dz$ dove $\gamma_R$ è la frontiera del disco ${z \in CC| abs(z)<R}$ (orientata in senso antiorario) per $R=1,4,6$. Ci basta usare la formula dei residui, andando a calcolare i poli di $z/(e^z-e^-z)$ che sono presenti nel disco ${z \in CC| abs(z)<R}$, se $R=1$ abbiamo solamente una singolarità rimovibile in $0$ e quindi nessun polo, quindi la somma dei residui è nulla e quindi l'integrale è nullo. Se $R=4, 6$ abbiamo due poli ...
1
15 giu 2024, 22:59

CptKeg
Buonasera, ho incontrato questo esercizio dove non so proprio mettere mano.. Qualcuno può darmi una strada da seguire? Un’automobilista sta viaggiando verso una montagna a velocita costante, come mostrato in figura. Quando si trova a un km dalla base della montagna d`a un colpo di clacson. Sapendo che sen- te l’eco dopo circa 6 secondi, stimare la velocita dell’automobile [porre la velocita del suono pari a 300 m/s].

ballerina90
ciao a tutti! ho un esercizio che mi chiede di calcolare l'indicatrice di dupin la superficie che ho è parametrizzata da $x(u,v)=(u,v,u^4+v^2)$ e devo calcolare l'indicatrice nel punto $(0,0,0)$ ora io ho la definizione di indicatrice $k_1 a^2+k_2 b^2=\pm 1$ con $k_1,k_2$ curvature principali e $(a,b)$ coordinate in $T_pS$, piano tangente a $S$ in $p$,nella base ortonormale. Ma nn capisco come metterla in pratica!!! ok ...

Angus1956
Mostrare che tre delle quattro radici del polinomio $z^4-7z-1$ hanno modulo più grande di uno. Per il teorema fondamentale dell'algebra sappiamo che il polinomio ha $4$ radici. Sia $D={z in CC| abs(z)<1}$, consideriamo le funzioni $f(z)=-7z-1$ e $g(z)=z^4$ olomorfe, si ha che per ogni $z$ nel bordo di $D$ vale $abs(f(z))>abs(g(z))$ e quindi sono soddisfatte le ipotesi del teorema di Rouche per cui il numero di zeri contanti con molteplicità ...
2
15 giu 2024, 13:44

Angus1956
La funzione $f$ tale che l'immagine di un numero complesso di modulo $\rho$ e argomento $\theta$ ha modulo $2 \rho$ e argomento $2 \theta$ è olomorfa? Io ho pensato di fare così: Abbiamo $\rhoe^(i \theta)=x+iy$ e quindi $e^(i \theta)=(x+iy)/ \rho=(x+iy)/sqrt(x^2+y^2)$, ma allora $f(x+iy)=f(\rhoe^(i \theta))=2\rhoe^(2i \theta)=2rhoe^(i \theta) e^(i \theta)=2(x+iy)(x+iy)/sqrt(x^2+y^2)=(2(x^2-y^2))/sqrt(x^2+y^2)+i(4xy)/sqrt(x^2+y^2)$ e se proviamo a verificare le equazione di Cauchy-Riemann esse non vengono verificate e quindi $f$ non è olomorfa. Volevo sapere se andasse bene e se per caso ci fosse ...
3
15 giu 2024, 12:27

Angus1956
Esiste una funzione olomorfa $f:CC->CC$ la cui parte reale sia la funzione $u(x,y)=x^4+2y^4-2x^2y^2$? Allora io ho pensato di fare cosi: Sia $v$ la parte immaginaria della funzione $f$ (supposta che essa esista), allora dovrebbero valere le equazioni di Cauchy-Riemann: $\{((delv)/(dely)=(delu)/(delx)),((delv)/(delx)=-(delu)/(dely)):}$ ovvero $\{((delv)/(dely)=4x^3-4xy^2),((delv)/(delx)=4x^2y-8y^3):}$ Ora usando la prima equazione otteniamo $v=4x^3y-4/3xy^3+s(x)$ dove $s(x)$ è un polinomio in $x$. Allora $(delv)/(delx)=12x^2y-4/3y^3+s'(x)$ e dalla ...
3
15 giu 2024, 11:45

Lollo9119
buonasera a tutti, avrei gentilmente bisogno del vostro aiuto nel calcolare questa matrice delle conduttanze che non riesco a finire di svolgere questo esercizio. qualcuno può aiutarmi a trovare i 4 valori della matrice
12
10 giu 2024, 22:09

Gregorius2
Ho bisogno del vostro aiuto perché mi sto scervellando a capire un concetto che mi sfugge... Devo trovare il Campo di Esistenza di una funzione: $ y=ln (ln x) $ A quanto mi è sembrato di capire, la funzione logaritmo necessita dell'argomento maggiore di zero per esistere. Allora, nel nostro caso, si devono tenere insieme due condizioni: $ ln x>0 $ e $ x>0 $ La prima delle due comporta che: $ x>1 $ Quindi se io metto a sistema queste due cose, ...
12
14 giu 2024, 10:19

CptKeg
Buonasera in questo esercizio volevo solo chiedere una conferma sul ragionamento: $ { ( T - mg = ma ),( T-mg = -ma ):} $ Ho esplicitato tutto per T e dopo ho eguagliato le tensioni avendo che l'A_cm =0

Quasar3.14
$ \int_0^(1/2)\ 1/(xln^2x) dx = lim_(epsilon->0^+)\int_(0+epsilon)^(1/2) 1/(xln^2x) dx = lim_(epsilon->0^+) [-1/(lnx)]_(0+epsilon)^(1/2) = lim_(epsilon->0^+) [1/ln(2) - (-1/ln(0+epsilon))] = 1/ln(2) $$ \int_0^(1/2)\ 1/(xln^2x) dx = lim_(epsilon->0^+)\int_(0+epsilon)^(1/2) 1/(xln^2x) dx = lim_(epsilon->0^+) [-1/(lnx)]_(0+epsilon)^(1/2) = lim_(epsilon->0^+) [1/ln(2) - (-1/ln(0+epsilon))] = 1/ln(2) $Ciao a tutti, potreste dirmi, per favore, se sto svolgendo bene questi esercizi? 1) $\int_2^(+infty)\ 1/(xlnx) dx$ La funzione $f(x)$ è continua nell'intervallo $[2, +infty)$ $\int 1/(xlnx) = int 1/(lnx) * 1/x dx = int 1/u du = ln(u) = ln(lnx) + C$ con $u=ln(x)$ e $du=1/x dx$ $\int_2^(+infty)\ 1/(xlnx) dx = lim_(t->+infty) \int_2^t 1/(xlnx) = lim_(t->+infty) [ln(lnx)]_2^t = lim_(t->+infty) [ln(ln(t)) - ln(ln(2))]$ L'integrale diverge. 2) $\int_0^(1/2)\ 1/(xln^2x) dx$ $\int 1/(xln^2x) dx = int 1/ln^2z * 1/x dx = int 1/u^2 du = int u^n du = u^(n+1)/(n+1) = -1/(ln(x) +C$ Con $u = lnx$, $du = 1/x dx$ e $n= -2$ Integrale improprio di secondo tipo, per calcolare il valore ...
3
10 giu 2024, 20:47

cdl07
Salve, ho notato che effettuando due operazioni sui numeri da 19 a 99, il risultato corrisponde allo stesso numero sul quale vengono effettuate le due operazioni. Esempio: 39 3x9=27 3+9=12 27+12=39 Altro esempio: 79 7x9=63 7+9=16 63+16=79 MChiedo: perché ciò avviene solo dai numeri che vanno da 19 a 99? Carlo
7
13 giu 2024, 11:02

Studente Anonimo
Ciao a tutti, scusate la banalità della domanda ma c'è un'equazione che non capisco se sono sbagliate le slide del prof o io che mi sto perdendo qualcosa. Nelle slide c'è questa equazione: $$m_t-m_t^*-p_t-p_t^*=\eta(y_t-y_t^*)+\sigma(i_t-i_t^*)$$ Poi viene scritto che bisogna risolvere per $p_t- p_t^*$ e quindi si ottiene: $$p_t-p_t^*=m_t-m_t^*-\eta(y_t-y_t^*)+\sigma(i_t-i_t^*)$$ Ma come ci si arriva? Cioè ho provato ...
2
Studente Anonimo
12 giu 2024, 19:17

marthy_92
Ciao a tutti! Ho dei problemi con una dimostrazione "lasciata al lettore". Dato un sistema di eq a derivate parziali del I° ordine, quasi lineare $ \sum_{i=1}^{n} A^i(ul(x),ul(u))*\frac{\partial ul(u)}{partial x_i} = B(ul(x),ul(u)) $ Questo, con una trasformazione di variabili invertibile $ { ( ul(z)=ul(Z)(ul(x)) ),( ul(w)=ul(W)(ul(x),ul(u)) ):} $ può essere scritto nella forma $ \sum_{i=1}^{n} hat(A)^i(ul(w))*\frac{\partial ul(w)}{partial z_i} = 0 $ Ovvero il sistema si scrive nuovamente in forma quasi lineare (coefficienti dipendenti dalle variabili dipendenti $ ul(w) $.) Ho usato come suggerito, la regola di derivazione delle ...
0
13 giu 2024, 18:28

HowardRoark
Le funzioni di costo di breve e di lungo periodo di un'impresa sono rispettivamente $C_(SR)(Q)=5000 + 50Q^2$ e $C_(LR) = 1000Q$. Devo determinare le funzioni di offerta di breve e di lungo periodo. Nel lungo periodo, se $P>1000$, l'impresa vorrà offrire una quantità infinita (perché $MC_(LR) = 1000$) (non so come scrivere la funzione di offerta in questo caso); se $P<1000$ non vorranno offrire nulla (sempre perché non esiste una quantità di output tale per cui ...

DeSkyno18
si consideri una spira circolare di superficie S = 100cm^2 e resistenza R = 0.1ohm che trasla nella direzione indicata in figura con velocità costante v = 0.2 m/s in presenza di un campo magnetico B = (-kx, 0, kz) con k = 0.2T/m. Si determini l'espressione della forza elettromotrice e il valore della corrente indotta che scorre nella spira, motivando il verso. La spira si trova nel piano x-y e trasla verso il basso (in direzione -z in sostanza) Ho pensato di calcolare il flusso attraverso la ...

CptKeg
Buongiorno, ho un dubbio sulle tensioni di questo sistema. Devo ragionare come se sulla massa 1 fossero applicate 2 tensioni(una relativa al collegamento con la massa m2 e l'altra collegata alla carrucola, quindi 2T = m1g?). Oppure è più semplice di quello che sembra ed ho semplicemente T = m1g e T = m2g ed eguagliando ho che m1 = m2?

CptKeg
Buonasera, vi allego un problema in cui mi sono imbattuto, il quale però non riesco a finire: Due aste omogenee rispettivamente di lunghezza 60 cm e 15 cm possono oscillare senz’attrito attorno a un comune asse orizzontale, come mostrato nella figura. Esse vengono lasciate andare contemporaneamente, a partire da ferme, da posizioni iniziali simmetriche rispetto alla verticale. Sapendo che θ = π/6, stimare dopo quanti secondi le aste si urteranno. Ho calcolato momento di inerzie e velocità ...