Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Postit1
$((-0.04,0.06))$ $((0.0001,0.001),(0.001,0.045))^-1$ $((-0.04,0.06))^{\prime}$ = 22.046 l'ultimo vettore è il trasposto del primo... volevo chiedere se qualcuno mi potrebbe spiegare il procedimento da fare per arrivare a quel risultato. ho cercato come si fanno i prodotti tra matrici ecc... ma nn riesco proprio a farlo non riesco a capire i passaggi da fare... grazie mille in anticipo
2
9 dic 2011, 15:46

John William Anglin
http://imageshack.us/photo/my-images/70 ... 050pe.jpg/ Se qualcuno potesse darmi qualche aiuto, glie ne sarei grato. Anche solamente per confrontarmi col risultato ottenuto. Io pensavo di agire in 2 modi: - O partendo col calcolare J rispetto a H e poi trasportare con Huygens fino al baricentro del triangolo equilatero( e qui sorge un'altra domanda: il baricentro del triangolo equilatero è ad un terzo dell'altezza?) - O, calcolare J rispetto al baricentro di uno dei 2 triangoli rettangoli e trasportare da G1 del Triang Rett. a G ...

ciuf_ciuf
Salve, non riesco a svolgere questo esercizio Facendo uso della trasformazione di Fourier, risolvere l'equazione: $ T'' - T = \delta'' $ $ T \in S' $ essendo $\delta$ la distribuzione di Dirac. Il primo membro diventa $ (-2\piiy)^2F(T) - F(T) = \delta'' $ si mette in evidenza F(T) in modo da lasciarlo solo al primo membro per calcolare la trasformata di fourier(io la faccio col metodo dei residui). Il problema che mi blocca è il $ \delta'' $, se era solo $ \delta $ so che la trasformata ...
8
11 dic 2011, 12:56

Mith891
ciao a tutti, ho un dubbio sull'uso pratico del poligono delle forze che spesso vedo utilizzato negli esercizi di statica per calcolare le reazioni vincolari. Quello che non capisco è come, una volta costruito il poligono (in genere un triangolo) sia possibile ricavarne i valori numerici delle reazioni. Prendo per esempio questa figura dal Viola: il libro spiega come disegnarlo e poi liquida il problema dicendo: "dal triangolo d'equilibrio, poi, si ricavano le reazioni vincolari, cioè le ...
3
11 dic 2011, 17:01

cardillo1
salve a tutti, sono una studentessa di fisica, gradirei avere un consiglio su quale libro di chimica comprare. il prof non ha voluto indicarcene uno in particolare perché ha detto che altrimenti verrebbe accusato di favoritismo, il problema è che ho visto che costano tutti molto ed essendo una materia "secondaria" per me e semestrale, vorrei comprarne solo uno. magari uno che ha più un approccio di "chimica per la fisica" ecco quelli consigliati ATKINS, JONES, Principi di Chimica - ...
7
15 ott 2011, 10:29

lollo honda cr
Volume del prisma Miglior risposta
aiutami con questo proplema, please!!!!!! doma verifica!!! in un prisma retto avente misura dell h di 12,5 m, ha per base un triangolo isoscele che ha rapporto delle misure della base e dellato obliquo uguale ai 8/5 mentre la loro differenza è 4 m. calcola il volume del solido. (9600m3)
1
11 dic 2011, 17:54

gio73
buona sera a tutti, vorrei far partecipare i miei studenti di II e III media a qualche "olimpiade" di matematica. La nostra scuola si trova in un paesino piuttosto sperduto, cerchiamo qualcosa in cui la prima selezione possa avvenire presso la sede della scuola di provenienza. Qualche consiglio?

superfox1
Ciao, sto cercando di risolvere il seguente problema: immaginate che abbia N elementi in ordine e che ne voglia selezionare (in media) solamente M (con M
2
9 dic 2011, 19:49

Noisemaker
Sia $(x_n)$ una successione crescente e verificante, $|x_{2^{n+1}} - x_{2^n}| \le \frac{1}{2^n}.$ Dimostrare che $(x_n)$ è convergente. Soluzione La successione $x_n$, essendo monotona crescente, ammette certamente limite; noi dobbiamo dimostrare che questo limite è finito. La sottosuccessione $ x_{2^n}$ convergente in quanto è di Cauchy, infatti: una successione è di Cauchy se $\forall \varepsilon>0,\exists \nu>0 , |x_m-x_n|<\varepsilon \quad m,n >\nu$ o, equivalentemete $\forall \varepsilon>0,\exists \nu>0 , n>\nu \quad \forall k\ge1|x_{n+k}-x_n|<\varepsilon$ allora nel nostro ...
1
11 dic 2011, 19:53

Noisemaker
Salve a tutti ... mi sono appena iscritto ho un paio di domade da da sottoporre, domande alle quali non ho ancora chiaro ne il procedimento risolutivo, ne la soluzione! il quesito è questo: Sia $f: [a,b] \to \mathbb{R},$una funzione derivabile tale che \begin{equation} \begin{array}{cl} f(a)=f(b), & \\ \\ f'(a) = f_{+}'(a)>0, \,\, f'(b) = f_{-}'(b)>0. \end{array} \end{equation} Dimostrare che esiste $c\in (a,b)$ tale che $f(c)=0$ e $f'(c)\le 0.$
8
11 dic 2011, 19:36

Sk_Anonymous
A pagina 13 di questa dispensa http://users.dimi.uniud.it/~gianluca.go ... nsiemi.pdf ci sono delle affermazioni che mi hanno turbato: Se io ho una famiglia di insiemi vuota [tex]\emptyset[/tex], dice che l'intersezione della famiglia [tex]\bigcap \emptyset[/tex] non esiste, mentre l'unione [tex]\bigcup \emptyset[/tex] è l'insieme vuoto. Chi riesce a spiegarmi in modo convincente il perché? Ecco come la penso io: Intersezione: L'intersezione di una famiglia di insiemi è un insieme che racchiude tutti gli elementi comuni a ...

Sk_Anonymous
Supponiamo di avere la seguente funzione \(\displaystyle \begin{cases} x^{2} & x\ne0\\ 123 & x=0 \end{cases} \) Il grafico sarà la parabola bucata nell'origine con un puntino nel punto (0,123) Ora ne vogliamo calcolare il limite per \(\displaystyle x \to 0 \). Dal punto di vista analitico ho che \(\displaystyle lim_{x \to 0^+} = lim_{x \to 0^-} = 0 \). Poichè si dice che il limite esiste se esiste il limite destro e sinistro e questi sono uguali, di questa funzione dico che il limite per x ...

ale@17
AIUTO GEOMETRIA (74863) Miglior risposta
UN AIUTO X FAVORE LA SOMMA DELLE AMPIEZZA DI DUE ANGOLI ALLA CIRCONFERENZA MISURAN 98° E UNO E I 2/5 DELL ALTRO. ALCOLA L AMPIEZA DEGLI ANGOLI AL CENTRO CORRISPONDENTI. GRAZIE A TUTTI
1
11 dic 2011, 09:25

Mrhaha
Ragazzi stavo facendo un esercizio sugli integrali doppi, e mi sovviene un dubbio! Mi si chiede di calcolare un integrale doppio passando ad un integrale curvilineo, e ovviamente ho pensato di utilizzare le note formule di Gauss-Green. Il dominio sul quale devo calcolare questo integrale è un anello circolare, ora il mio dubbio: La frontiera questa volta è un pò più articolata. Supponiamo di avere un anello in cui la cinconfernza interna ha raggio 1 e quella esterna raggio 2. La frontiera posso ...
4
10 dic 2011, 14:01

mikeleom
durante lo studio della funzione $y=(x^2-4)/(x^2-1)$ con $x!=\pm1$ e con $x^2-4>0$ e $x>pm2$ e $x>pm1$ e $[-prop,-2]$ ,$[2,+prop]$ e $[-1,+1]$ quindi faccio i limiti: $\lim_{x \to \-2^-} (x^2-4)/(x^2-1)=4$ $\lim_{x \to \-prop} (x^2-4)/(x^2-1)=1$ $\lim_{x \to \2^+} (x^2-4)/(x^2-1)=4$ $\lim_{x \to \+prop} (x^2-4)/(x^2-1)=1$ $\lim_{x \to \+prop} (x^2-4)/(x^2-1)=1$ $\lim_{x \to \-1^+} (x^2-4)/(x^2-1)=4$ $\lim_{x \to \+1^-} (x^2-4)/(x^2-1)=4$ corretto? ah e se c'è un asintoto,ad esempio 1, e sappiamo che grazie allo studio della funzione è positivo prima e ...
8
11 dic 2011, 12:53

Sk_Anonymous
Ciao a tutti, ho una domanda apparentemente banale, ma a cui non ho trovato risposta: Se io ho una famiglia di insiemi [tex]I = \{ I_j \} _{j \in J}[/tex] dove [tex]J[/tex] è l'insieme di indici di [tex]I[/tex], nel caso in cui [tex]I[/tex] abbia un solo elemento ([tex]I = \{ I_1\}[/tex]) posso affermare che [tex]I = I_1[/tex]?

Newton_1372
http://imageshack.us/photo/my-images/3/molleinuntriangolo.png/ Domanda 1. I tre pezzi che compongono l'energia potenziale della pallina hanno tutti LO STESSO SEGNO? Domanda 2. Vorrei studiare il tutto per piccole oscillazioni.Quale sistema di riferimento mi conviene usare per evitare dei calcoli troppo complessi? Ho provato a porre il sistema di riferimento nel vertice del triangolo in basso a sinistra, ma viene un MACELLO...intuitivamente immagino di doverlo porre "verso il centro", l'unico problema è che la pallina SI MUOVE, quindi ...

_RED_1
Salve, mi trovo ad affrontare l'argomento delle successioni di funzioni. I dubbi mi perseguitano e non riesco a venirne a capo con i soli libri. Ho letto diverse discussioni, ma non riesco a relazionare le risposte date nei precedenti thread, ai miei dubbi. Vengo al dunque scrivendo quello che so e facendo qualche domanda specifica. Nel calcolo della convergenza puntuale delle serie di funzioni, fissato \( x \) $in$\( I \) con \( I \) intervallo in cui analizzare la ...
4
6 dic 2011, 20:09

Livadia1
Ciao a tutti il mio profe di fisica mi ha chiesto di rispondere a questo quesito, ma io non so davvero come uscirne. Soluzione classica e relativistica del moto di una particella inizialmente in quiete soggetta a una forza costante. Help me!!!

menale1
Carissimi ragazzi, sapreste consigliarmi una qualche fonte da cui reperire esercizi di fluidodinamica e fluidostatica, sostanzialmente applicazioni di Bernoulli, equazione di continuità, stevino, archimede e quanto lecito per un esame di fisicaI; ahimè ho esaurito quelli del testo. Ringrazio anticipatamente per la collaborazione.