Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
AngryOnion
Salve a tutti, spero di non disturbarvi o annoiarvi, però ho bisogno del vostro aiuto; scommetto che in questo perdiodo pre-esami sicuramente ci saranno un sacco di nuovi topic con richieste di aiuto, quindi vi ringrazio anticipamente del tempo che mi dedicate per aiutarmi. Ora il quesito Non riesco a risolvere questo esercizio: Calcolare il polinomio di Mac Laurin dell'ottavo ordine della funzione: sin(2$\pi$x)/(1-ln(1+x))

opil
Ciao a tutti! Ho una domanda riguardante il linguaggio di programmazione C. Questo è il testo del mio problema: Si sviluppi un programma in linguaggio C che, come nel caso di una macchina distributrice di caffè, riceve in ingresso un numero intero positivo N (corrispondente ad un importo da pagare in centesimi) e, successivamente, una sequenza di numeri interi corrispondenti alle monete inserite, che possono essere da 1, 5, 10, 20 e 50 centesimi. E’ richiesto che il programma ripeta ...
4
7 gen 2012, 22:48

Elyon_90
salve a tutti =) come si sa a poche ore dall'esame vengono in mente i dubbi più disparati ^_* 1) abbiamo la $f(z) = e^(sqrt(z))/(z(z+i))$ avendo una radice devo fissare il taglio per avere una sola determinazione, decido di metterlo sull'asse positivo. la funzione presenta polo in $z=-i$ l'altro punto in cui si annulla il denominatore è $z=0$ ma questo, a causa del taglio, non è un punto di singolarità isolata. a questo punto si richiede di calcolare il residuo in ...
3
8 gen 2012, 12:10

Car4691
RAGAZZI NON RIESCO A RISOLVERE L'ESERCIZIO SEGUENTE: Nello spazio vettoriale R^4 si considerino i sottospazi: W1 = L(a, b , c), dove:a = (2, 0, 1, 0), b = (-1, 1, 0, 1), c = (0, 3, -1, -1); W2 = L(e , f ,g), dove e = (-1, 1, 5, 4),f = (0, 3, -2, 1),g = (2, 7, -16, -5). ii) Trovare un sottospazio W3 di R^4 tale che W3 ⊕ W2 = R^4 . NON RIESCO A RISOLVERE QUESTO PUNTO. GRAZIE ANTICIPATE.
1
8 gen 2012, 20:19

Car4691
RAGAZZI APPROFITTO DELLA VOSTRA DISPONIBILITA' PER FARVI VEDERE L'ESERCIZIO SEGUENTE: Sono dati, in R4 , i sottospazi vettoriali: H = {(x, y, z, t) ∈ R4/x + 2y = 2t = 0}, K = L((1, 2, 0, 1), (2, 4, -1, 1), (0, 0, 1, 1), (1, 2, 4, 5), (1,-1, 0, 5)). ii) Determinare una base di H $nn$ K . iii) Il vettore X = (1, 2, 3, 4) appartiene a H+K? In caso affermativo decomporlo nella somma di un vettore di H e di un vettore di K, in tutti i modi possibili (a meno di un cambiamento di ...
1
8 gen 2012, 19:48

Sk_Anonymous
Salve, il mio libro di Analisi e la mia prof, quando hanno dato la definizione di integrale di superficie, si sono limitati ad una definizione "euristica", tralasciando quella vera e propria. Io vorrei dunque sapere il procedimento rigoroso che si fa (come per l'integrale di Riemann e l'integrale doppio) per arrivare a definire l'integrale di superficie. Gradirei che mi fosse suggerita qualche dispensa online. Grazie mille.

Dino 921
Salve, non mi è chiaro il concetto di limite superiore e limite inferiore di una successione. Chi può chiarirmi tale concetto, spero con degli esempi?
11
7 gen 2012, 14:14

Giugi921
Ho la seguente funzione: ((2e^x)+(x^2))/((2e^x)-(x^2)) mi viene chiesto di determinare insieme di definizione, segno monotonia e limiti. essendomi sembrato un po' complicato da studiare il dominio, ho approssimato e^x con il polinomio di taylor fino al secondo ordine ottenendo così il seguente denominatore: 2x+2 e ho posto che l'insieme di definizione era per x diverso da -1....per controllare ho fatto anche il grafico di f(x) originale,ovvero senza approssimazioni ed effettivamente c'era un ...
14
7 gen 2012, 19:50

PrincipioAttivo
Ciao a tutti, mi presento: Andrea di Novi Ligure. Per una materia tecnica (SEO) che sto studiando necessito di un aiuto per la soluzione ad uno strano (per me?) problema matematico. Spero di trovarmi nella sezione corretta. Abbiamo quattro punti: A B C I punti devono essere interconnessi tra loro ma unicamente e in modo unidirezionale, solo una volta. Quindi, A --> B ma B non può tornare ad A Verso A ci andrà C. Per cui: A--> B--> C---> A C non può tornare su B perchè già connesso. Ci ...
10
1 gen 2012, 01:18

NeOnis
Help me,thank Miglior risposta
Il parallelogramma ABCD è diviso dalla diagonale AC in due triangoli isoscele. Sapendo che BàC misura 46°,calcola la misura degli altri angoli del parallelogramma. {67°,113°}
6
8 gen 2012, 13:24

iamagicd
Un punto materiale di massa m=300 g è poggiato sull’estremità di un carrello, in quiete rispetto al carrello. Tra il carrello ed il punto materiale l’attrito è trascurabile. Sull’altro estremo del carrello è posta una molla di costante elastica k=10 N/m il cui estremo libero dista d=0.5 m dal punto materiale. Il carrello è accelerato con accelerazione A=1 m/s2. Determinare la massima compressione della molla. Calcolare il caso precedente nel caso in cui l'attrito dinamico fosse presente e pari ...

Delle911
Salve a tutti, ho un problema con una serie: devo discuterne la convergenza e avevo già in mente di usare il confronto asintotico, ma non riesco a dimostrare che è una serie a termini positivi, qualcuno può darmi qualche dritta? Grazie \[ \sum_{k=1}^n\frac{e^{-1/n}-cos{(1/n)}+(1/n)}{sen(1/\sqrt{n})} \]
2
8 gen 2012, 19:26

rikk91
Salve, per trovare lo sviluppo in serie nell’intervallo (−1, 1) e con centro in 0 della funzione $ x/(1-x^2) $ devo scrivere tale funzione come un polinomio di taylor ($f(x)+f'(x)x+1/2f''(x)x^2+...$) per poi contrarla nella notazione $ sum_(x = 0)^(oo) $ giusto? il mio problema è che già alla derivata terza i calcoli diventano complicati. Esiste un metodo più efficente e veloce del mio per arrivare alla soluzione ?
5
8 gen 2012, 18:47

TROTTY69
Scusate mia figlia ha provato in tutti i modi ad risolvere questo problema , ma non ci riusciamo tutte e due ... potete spiegarmelo ?! grazie mille Considera un parallelogramma in cui l'altezza superi di 5cm il doppio della base . La loro somma è di 80cm Calcola l'area del parallelogramma
6
7 gen 2012, 12:36

Marix2
Come da titolo devo determinare l'equazione della retta tangenta al grafico di f nel punto 1. $f(x)=x^(1/x)$ Ho trovato $f(1)=1$ Ora non riesco a calcolare la derivata di f(1). $f'(1)=lim_(x->1) (x^(1/x)-1)/(x-1)$ Ora non so come continuare, se cambio variabile con $ h=x-1$ si incasina ancora di più. Qualche consiglio? Grazie.
4
8 gen 2012, 18:43

aleredblack
Ciao a tutti, Posso dire che se una curva è l'unione di n curve regolari allora essa è regolare a tratti? In particolare nell'ambito del seguente esercizio: Sia \(\gamma\) la curva del piano unione di \(\gamma 1\) che congiunge (1,0) con (-1,0) lungo l'arco di circonferenza \(x^2 + y^2 = 1\) con \(y \geq 0\), del segmento \(\gamma 2\) che congiunge (-1,0) con (0,-1) e del segmento \(\gamma 3\) che congiunge (0,-1) con (1,0) a)Stabilire se \(\gamma\) è regolare b)Scrivere ...

Ame1992
Un punto materiale di massa m è appoggiato su di un piattello (schematizzato anch'esso come un punto materiale di massa m) connesso ad una molla verticale di costante elastica k. La molla viene inizialmente compressa (con il punto materiale sul piattello), calcolare il valore minimo della compressione della molla y0 perchè punto e piattello si separino (dopo un certo tempo t). Sono riuscito a capire (forse) che il pallino si stacca dal piattello quando l'accelerazione che la molla imprime sul ...

Deleted1
Salve a tutti, non è la prima volta che mi trovo a combattere con le serie numeriche. Visto che non ho trovato una risposta che mi interessi su google o sul forum mi sono registrato. Avrei due domande: 1) Come faccio a stabilire con quale criterio studiare una serie? In questo caso se vedo un \(\displaystyle (-1)^n \) o simili uso Leibniz, ma per il resto delle serie? 2) Nel caso del criterio del confronto, come trovo una serie con cui maggiorare/minorare quella che sto studiando? Da tutti ...
2
8 gen 2012, 18:45

angelo.digiacomantonio
Ciao a tutti, sto facendo un esercizio che vede la dimostrazione della convergenza di una serie del tipo $\sum_{n=1}^infty (5^(n-2))/(2^(3n))$; ho dimostrato che converge con il criterio del confronto ma ho difficoltà nel calcolarvi la somma con $\lim_{n \to \infty}(5^(n-2))/(2^(3n))$ in quanto non riesco togliere la forma indeterminata. Applicando de l'Hopital ottengo $\lim_{n \to \infty}(5^(n-2)ln5)/(2^(3n)ln2)$ che è comunque indeterminata e, nel riapplicarlo nuovamente, ottengo, in sostanza, sempre l'indeterminazione...come posso fare per calcolarlo? Forse ...

paiula
Buonasera a tutti, avrei bisogno solo di un piccolo chiarimento sulla definizione di spazio riflessivo. Ho capito che data L'applicazione (isometria) $X->X$* che ad $x$ associa $F(x)$ dove $F$ è un elemento del duale di X deve essere suriettiva oltre che iniettiva, lineare e continua. La mia domanda è: quali ipotesi bisogna fare sullo spazio di partenza??? cioè X deve essere uno spazio di Banach o basta che sia uno spazio normato?? Grazie
2
8 gen 2012, 14:19