Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Mi aiutereste con questo limite? $ lim_(x -> 0^+) (x^x-1)/(cos^2sinx) $ questo lo posso riscrivere come $ lim_(x -> 0^+) (e^(xlnx)-1)/(sin^3x) $ e quindi $ lim_(x -> 0^+) (xlnx)/(sin^3x) $ e poi non riesco a continuare...$(sin^3x)$ è uguale a $sinxsinxsinx$? E quindi a $x^3$?

su \(\mathbb R\) definisco la relazione di equivalenza \(x\sigma y\Leftrightarrow x-y\in\mathbb Q\).
faccio il quoziente e scelgo i rappresentanti \(\in(0,1)\). in pratica, l'insieme di vitali in \((0,1)\).
ora, ho la funzione di scelta \(f\) che mappa \(x\mapsto[x]\) (ogni \(x\) nel suo rappresentante in \((0,1)\)).
sapendo che l'insieme di vitali non è misurabile, \(f\) è integrabile secondo lebesgue?
\(f\) è limitata, quindi se è misurabile è anche integrabile.
e qui non so ...

Ciao a tutti, sto studiando per l'esame di Teoria dei Segnali e finora ho imparato come si fa a svolgere una convoluzione lineare, ma quest'ultima può essere fatta solo se almeno uno dei due segnali è di energia. Altrimenti entrano in gioco la convoluzione normalizzata o quella circolare definite rispettivamente:
$\lim_{A \to \infty}1/A\int_{-A/2}^{A/2} x(tau)y(t-tau) d\tau$ -->convoluzione normalizzata (per segnali di potenza)
$1/T\int_{u}^{u+T} x(tau)y(t-tau) d\tau$ con $T$ periodo comune -->convoluzione circolare (per segnali ...

Salve ragazzi, so che può sembrare una domanda un po' stupida, ma durante il calcolo dei residui sto avendo dei problemi con il calcolo delle radici complesse .
Vi posto un esempio e la mia eventuale prova di soluzione :
$ z^3 +1 = 0 , z=(-1)^(1/3) $
Allora : ho considerato come parte reale e immaginaria : $ x=-1, y=0 $ pertanto avrò che l'angolo sarà $ \theta = arctan(y/x) - \pi => - \pi $ a questo punto ho scritto il tutto sotto forma di esponenziale $ (e^(-i\pi +2k\pi))^(1/3)) $
Sinceramente ho non pochi dubbi e spero che ...
Sera, vorrei porvi due quesiti:
1 premettendo che so come si risolvono diseq. del tipo \(\displaystyle \sqrt{p(x)}q( x)\) come posso procedere nel caso in cui mi trovi \(\displaystyle \sqrt{p(x)} \)\(\displaystyle \sqrt{q(x)} \)? Con "o" intendo < oppure >.
2 tgx>senx, con quelche passaggio algebrico ottengo senx(1-cosx)

salve, io ho questo problema:
allora il punto a e il punto b sono lo stesso punto no? in mezzo non c'è niente quindi è come se fossero un unico nodo.. e per come ho messo le correnti ho che praticamente su ab passa la $I$= $I_2$
ho impostato il sistema prendendo come nodo c e come maglie la maglia di sinistra con R, 4 R e il generatore $epsilon$ e la maglia a destra con 2$epsilon$ 2R e 3R infine siccome mi serviva u naltra equazione, ho preso la ...
Aiuto integrazione numerica!
Miglior risposta
Approssima mediante la formula di Newton-Cotes semplice dei rettangoli il valore dell’integrale
integrale da 0 a pi di (sinx dx)
Non ho capito che formula devo utilizzare quella dei rettangoli composita???

Limite di funzione (76201)
Miglior risposta
Lim 1 - cos^3 x /
x→0 xsen(2x)
Non trovo la soluzione di qst limite, l'ho risolto con de l'Hopital..questo è il procedimento che ho svolto:
Lim -3cos^2 x•(-sen x) /
x→0 sen (2x) + 2x•cos(2x)
Una volta arrivata qua se sostituisco, mi viene nuovamente la forma indeterminata.. Il procedimento sono sicura che è giusto.

Un ciclo di Carnot viene svolto da una mole di gas ideale monoatomico tra due isoterme alle quali le energie interne del gas sono, rispettivamente , $U_1 =3738 J$ e $U_2 = 4985 J$. La variazione di entropia lungo l'isoterma a temperatura maggiore è $S_2 = 3 (cal)/K$. Calcolare il rendimento di tale ciclo, il lavoro compiuto in esso dal gas e la variazione di entropia $AS_1$, lungo l'isoterma a temperatura minore. ($N_A = 6.02*10^23$ , $k_B = 1,38*10^-23 J/K$).
dal fatto che ...

Qualcuno ha esercizi relativi a questi argomenti? Non troppo difficili.

Vi posto questo esercizio di cui ho la soluzione ma non so come ci si possa arrivare:
Sia L un sottospazio di $ RR ^4 $ . Se i vettori $ ( ( 2 ),( 3 ),( 0 ),( 2 ) ) $ , $ ( ( 1 ),( 2 ),( 2 ),( 1 ) ) $ , $ ( ( 0 ),( -1 ),( 4 ),( 0 ) ) $ sono un sistema di generatori di L, la dimensione di L è:
3
Perchè?
Io so che la dimensione è il numero di vettori che formano una base, ma come faccio a sapere se questa è una base?

Una serie di potenze al giorno...
Allora:
\[
\sum_{n=0}^{\infty}\frac{\ln(n^{2}+1)-2\ln n}{n-i\pi}(z+i\bar{z})^{n}
\]
Fatta le sostituzioni \(w=z+i\bar{z}\) e \(a_n=\frac{\ln(n^{2}+1)-2\ln n}{n-i\pi}\) vado a studiarmi la serie \(\displaystyle{\sum_{n=0}^{\infty}a_nw^{n}}\). Abbiamo che
\[
|a_n|=\frac{|\ln(n^2+1)-2\ln n|}{|n-i\pi|}=\frac{\ln(1+\frac{1}{n^{2}})}{\sqrt{n^{2}-\pi^{2}}} \simeq \frac{\ln(1+\frac{1}{n^{2}})}{n}, n \to \infty
\]
Ora dovrei calcolarmi \(\displaystyle{\lim_{n \to ...

Sia $f: V->V$ un endomorfismocon matrice associata $K$ . $f$ è diagonalizzabile se e solo se esiste una base $B$ di $V$ formata da autovettori della matrice associata ad $f$.
La mia domanda è questa... Calcolo il polinomio caratteristico, controllo che la molteplicità algebrica e geometrica degli autovalori sia uguale, trovo gli autospazi e le loro basi...quindi scrivo in la base $B$ (ordinata a ...

Ciao a tutti ho un problema con questo esercizio, dopo aver dimostrato che il campo è conservativo ho trovato delle difficoltà nel procedere...
Campo vettoriale:
$F(x,y)=(x^(2)ycosx+2xysinx-y^(2)e^(x), x^(2)sinx -2ye^(x))$
calcolare l'integrale curvilineo lungo la curva:
$gamma=[x(t)=a(t-sint) , y(t)=a(1-cost)]$
con $ 0leq t leq 10pi $ dove $a$ è un parametro reale.
Grazie a tutti

Salve.
Vi posto un esercizio che non riesco a fare:
Da un mazzo di carte italiane vengono estratte 5 carte in blocco.
Caloclare laa probabilità $p$ di ottenere almeno 2 carte dello stesso seme
che io risolverei con $p=(((10!)/(2!*8!))*((30!)/(3!*27!)))/((40!)/(5!*35!))$ che torna $0.2$ mentre il risultato è: $1/18=0.05$
Dove sbaglio?

Non riesco a scrivere le formule, ma ci provo lo stesso... nel caso non si dovesse capire lo scrivo anche "letteralmente":
Non riesco a calcolare il codominio di questa funzione:
$ sqrt(log_(3)(log _(1/3) x/(x-1))} $
Che sarebbe: Tutto sotto radice: log in base 3 che moltiplica ( log in base 1/3 di argomento x/x-1)
Mi aiutate con i passaggi? =)
[xdom="gugo82"]Avevo visto solo l'altro post ed avevo deciso di chiudere un occhio su tutte le cose che non andavano...
Ora, però, noto con rammarico che ...

Salve a tutti!!
Volevo chiedervi dove è possibile trovare degli esercizi di variabili complesse (integrale coi residui, integrale di lebesgue, trasformate di fourier e di laplace, ...). In pratica ho già visto su google e sul forum se c'era qualcosa ma ciò che ho trovato sono stati pochissimi esercizi senza soluzioni. Quindi se qualcuno di voi sa dove posso trovare degli esercizi (magari con procedimento ma mi basta la soluzione!!) gliene sarei molto grato!!
Grazie!

Salve a tutti ragazzi
ho un dubbio sul dominio di uno studio di funzione
ho $\f(x)=e^(x/(x-1))$ il dominio è tutto $\RR$ o $\RR-{1}$
Grazie mille e scusate la stupidità della domanda..
Vito L
Salve a tutti. È da un pò di tempo che sto cercando di capire come si risolvono disequazioni del tipo:
\(\ \sqrt{1+x^2}

Mostrare che la serie $sum_(n=1)^(+oo) (-1)^n/( 2 sqrt(n) + cos(x) )$ converge uniformemente su $RR$.
Vi propongo questo esercizio (da intendersi come "sfida" personale per chi volesse imbarcarsi). Purtroppo non ho molto tempo da perderci dietro, visti gli esami in avvicinamento; nei prossimi giorni ci penserò.