Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Ciao ragazzi ho un problema con un limite di successione che dovrebbe essere molto semplice che è il seguente
$ lim_(n -> oo ) (sin^2 (3+sin (n)))^n $
non riesco a sbloccarmi ho provato sia con criterio del rapporto che criterio della radice
qualcuno sa aiutarmi?

Salve a tutti.... mi sono sorti dubbi su un esercizio che ho visto sul libro....speriamo qualcuno riesca a darmi una mano !! Grazie infiniteeeee
Determinare l'allungamento che subisce un' asta, avente sezione costante S e lunghezza l , a causa del proprio peso . Supporre che l'asta sia fissata come in fig. e che la densità del materiale che la costituisce sia d .
allora io so che lo sforzo = $ F / S$
F = m g e so che d = $m/V$ ...
ciao a tutti, ho un limite che non riesco a risolvere è della forma $oo/oo$, il limite è:
$lim_(x->1)(log(3^(2x)+2x-11))/(log[sin2pi(x-1)])$ che io ho cercato di risolverlo così:
nel logaritmo non posso mettere in evidenza nulla quindi uso un parametro che scelgo $(x-1)$ e per $x->1$, $(x-1)->0$... Inoltre spezzo il $-11$ e si ha:
$lim_((x-1)->0)(log(3^(2x)-9+2x-2))/(log[sin2pi(x-1)])$
applico il limite notevole per il seno al denominatore e mi resta:
$lim_((x-1)->0)(log[3^(2x)-3^2+2(x-1)])/(log[(sin2pi(x-1))/(2pi(x-1))2pi(x-1)])=$
$lim_((x-1)->0)(log[3^2(3^(2x-2)-1)+2(x-1)])/(log[2pi(x-1)])$
uso il limite ...

Ho il seguente integrale \(\displaystyle \int_\gamma \frac{1}{(1+z)(sinz)^2}dz\) dove \(\displaystyle \gamma \) é la curva definita da \(\displaystyle |z| = \frac{1}{2} \) , ho proceduto in questo modo:
\(\displaystyle f(z) =\frac{1}{(1+z)(sinz)^2} \) presenta singolarità dove il denominatore è nullo, quindi in \(\displaystyle z_1 = 1 \) e in \(\displaystyle z_2 = k\pi \), ora la curva \(\displaystyle \gamma \) è la circonferenza di centro \(\displaystyle z = 0 \) e di raggio 1/2, quindi ...

Sia $y(x)$ differenziabile su tutto l'asse reale tranne l'origine tale che $doty=y/x$.
Calcolare il $\lim_{x \to \0}\y(x)$
Ho provato a svolgere il quesito ma non mi viene.
Una primitiva di $1/x$ è $log|x|$, da cui il fattore integrante è $|x|$
moltiplicando ambo i membri dell'equazione per il fattore integrante ottengo:
$|x|doty-y|x|/x=0$
integrando:
$|x|y(x)=c$
da cui:
$y(x)= c/|x|$
adesso:
$\lim_{x \to \0}\y(x) = infty$
unico problema: il ...

Ditemi TUTTI i passaggi,x me e' davvero importante capirli al meglio:)
y=x/x^2-16
1)calcola insieme di esistenza
2)studio del segno
3)determina le equazioni di eventuali asintoti
4)determina gli intervalli(crescenza o decrescenza)
5)determina eventuali massimi e minimi relativi
6)analizza la sua concavita'
grazie..

salve, stavo facendo degli esercizi sugli integrali doppi e mi sono imbattuto nel caso del cambio di variabile .
il mio dubbio era se esiste un modo per calcolare la trasformazione inversa \(\displaystyle Phi \ ) delle variabili oppure se devo ricarvarle io ogni volta in base alla sostiuzione che ho effettuato.
grazie

Buongiorno! Allora io ho questo problema, che ho a mio modo risolto, ma essendo i risultati un po' strani volevo sapere se avevo sbagliato qualcosa
Mi viene innanzitutto:
-energia Potenziale: \(\displaystyle V = 2*k*l^2*cos(φ1+φ2) - 2*m*g*l*(cos(φ1)+cos(φ2)) + cost \)
Per ricavare le configurazioni di equilibrio:
$(delV)/(delφ1)$ \(\displaystyle = -2*k*l^2*sen(φ1+φ2) + 2*m*g*l*sen(φ1) = 0 \)
$(delV)/(delφ2)$ \(\displaystyle = -2*k*l^2*sen(φ1+φ2) + 2*m*g*l*sen(φ2) = 0 \)
da cui ...
ciao ragaqzzi qualcuno sa studiare questa funzione????io nn so che fare!!! mi servirebbe entro due ore ! sto messa proprio male :S grazie a tutti
f(x)=((x-8)^2)/e^(9-x)
sarebbe al numeratore x-8 tutto al quadrato, e al denominatore la e elevata a (9-x) per farvi capire meglio1!1grazie bacio

Finalmente oggi ho fatto questo benedetto esame...o meglio ho fatto lo scritto. Spero sia andato bene e nell'attesa dei risultati posto alcuni esercizi con le risposte che ho dato e vi chiedo pareri
1) Sia [tex]a_{n}[/tex] una successione limitata di numeri reali tale che la sottosuccessione [tex]a_{2n+1}[/tex] dei termini di posto dispari è decrescente e la successione [tex]a_{2n}[/tex] dei termini posto pari è crescente. Stabilire quali delle seguenti affermazioni sono certamente vere:
- ...

Bongiorno, questa dimostrazione della congettura di Pillai e stata publicata e confirmata da una rivista di matematica ! potete leggerlà qui :
http://jamelghanouchi.voila.net/fcatalan.pdf
PS : e in lingua francese !
Grazzie per la vostra attenzione !
[xdom="Martino"]Dati i precedenti (uno e due) i moderatori e gli amministratori del forum avvisano gli utenti che quanto dichiara l'utente Jamel ha valore scientifico molto dubbio.
Siccome questo è un forum serio, e siccome per ben due volte ...
Espressioni!
Miglior risposta
Ma come si fanno le espressioni doppie con le frazioni?!Graziee :wall non so più dove sbattere la testa!

Siano $p,q,r$ primi non necessariamente distinti. Provare che ogni gruppo di ordine $pqr$ è solubile
Sia $G$ un gruppo di ordine $pqr$. Se $p=q=r$ allora $G$ è un p-gruppo finito e quindi è solubile. Se $p=q$ e quindi $|G|=p^2r$ allora G possiede un p-Sylow normale $P$ oppure un r-Sylow normale $R$. Nel primo caso ${1}<P<G$ è una serie normale a fattori abeliani ...

Salve a tutti, vorrei qualche chiarimento sulle ipotesi per le formule di Gauss-Green e per le formule di riduzione. In particolare:
-Per quanto riguarda Gauss-Green la dimostrazione che ho studiato io ( non so se ce ne sono altre ) consiste nel calcolare separatamente i due integrali (utilizzando le formule di riduzione per uno) e far vedere che sono uguali. Le ipotesi sono: $f in C^1 $ e dominio regolare. La seconda come si spiega? Forse perchè in un dominio non regolare avremmo ...

Ciao,
volevo chiedervi una info.
Devo risolvere un sistema lineare utilizzando il metodo di Gauss con fattorizzazione e il pivoting parziale.
Vedendo diverse dispense ho notato 2 diversi metodi:
- #1: Si cerca di ricondursi ad una matrice diagonale superiore/inferiore lavorando sulle righe e calcolando per ogni elemento il relativo moltiplicatore.
- #2: Si lavora non sulle righe ma sulle colonne.
Faccio un esempio.
Ho questo sistema lineare.
$((2,0,1,0),(1,1,0,1),(0,-2,1,1),(2,1,0,1))((x_1),(x_2),(x_3),(x_4))=((3),(3),(0),(4))$
Con il metodo #1 mi ...

Salve a tutti, desideravo un chiarimento su una affermazione che no letto su un testo, parlando della forza gravitazionale e dei risultati dovuti a Cavendish:
"Il risultato delle misure di Cavendish può essere così sintetizzato. Data una massa m praticamente puntiforme situata in presenza di una seconda massa puntiforme M, se \(\displaystyle \vec{r} \) è il vettore posizione di m rispetto a M, la forza che m subisce ad opera di M può essere scritta nella forma:
\(\displaystyle ...

salve, sto provando a risolvere la seguente equazione complessa: $z^4+z^2+1=0$, devo trovare le soluzioni complesse.
visto la potenza quarta non conviene usare la forma algebrica quindi provo con quella esponenziale:
$rho*e^(i4theta)+rho*e^(i2theta)+1=0 ->rho*e^(i2theta) (1+e^2)+1=0$
ma non capisco come si ricavano le soluzioni
spero in qualche suggerimento, grazie

come posso scomporre questo polinomio?
$x^4$-$16y^4$+$x^2$+$4y^2$-$4xy$
Ho provato con un procedimento ma poi mi blocco a questo polinomio
($x$-$2y$) ($x^3$+$2x^2y$+$4xy^2$+$8y^3$+$x$-$2y$)
... Potreste aiutarmi?
Grazie in anticipo

Mi sono imbattuto in questo esercizio che mi sta dando parecchi problemi:
"Sia F un campo tale che $ch(F) \ne 2 $ e sia $F \subset K$ un'estensione di Galois finita, con gruppo di Galois associato ciclico e di ordine $4$.
a) Mostrare che $K = F (\beta)$ con $\beta = \sqrt( a + b \sqrt (d))$ dove $a,b,d \in F$ e $d$ non è un quadrato in $F$;
b) Provare che $a^2 - db^2$ non è un quadrato in $F$.
Ora il primo punto penso di averlo svolto ...

Salve a tutti, mi è sorto un dubbio inerente al dominio della seguente funzione:
$f(x,y)=√[(x^2+y^2)(x^2+y^2-1)]$
Dopo aver imposto tutto il radicando maggiore od uguale a zero ottengo che il dominio è tutta la zona esterna alla circonferenza $x^2+y^2=1$
nonostante ciò ottengo da Wolfram questo grafico che non c'entra davvero nulla con ciò che ho trovato io:
Con Grapher invece ottengo una specie di parabolide ellittico, senza la circonferenza centrale ( e ciò andrebbe bene per quanto trovato ...