Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

salve, sapete dirmi come faccio a calcolare la somma dei numeri pari delle colonne di una matrice??
se faccio r=A[j]%2 non funziona. codifica in C

Sono dalle 14.00 alle prese con questo esercizio , ma dopo trovato per tentativi (dopo un efferalgan ) una combinazione vincente non riesco a trovarne altre . Mi mostrate come si trovano tutte le combinazioni ?
Parafrasando una pubblicità : Aiutatemi
Siano $a,b,c$ numeri primi dispari diversi uno dall'altro e con $x,y$ interi dispari .
Per quali valori di $a,b,c,x,y$ $>1$ è verificata la seguente uguaglianza :
$a+ x*b$ = ...

Un corpo è in equilibrio sulla zona di separazione tra due liquidi non miscibili di densità $d_1=8x10^-2 (kg)/m^3$ e $d_2=1,1 x 10^3 (kg)/m^3$ rispettivamente. La frazione del volume totale del corpo immerso nel fluido a densità minore è 0.5, Determinare la densità del corpo.
Io ho ragionato così:
il corpo è soggetto alla spinta di archimede dovuta ad entrambi i liquidi, da cui: $S_1+S_2=F_p$. Ho poi pensato che la parte di volume immerso nel liquido $2$ è esattamente uguale a quella nel ...
Problema GEOMETRIA!!!!! Allora oggi la prof. mi ha interrogato sui problemi degli angoli (prima media) e siccome lei mi ha preso di mira xke sa che posso fare di piu' allora mi ha dato un problema che nn avevamo mai fatto per vedere se riuscivo a ragionare e siccome e suonata la campana mi sono salvata!! pero mi a detto che la prossima volta che sarebbe lunedi me lo avrebbe fatto fare per fortuna che ricordo il problema!!! allora dati:
a+b+c=170 gradi
a+b=35 gradi e 12 primi
b+c= 48 gradi e ...
dal vertice A dell'angolo retto di un triangolo rettangolo isoscele CAB si conduca una retta r, che ha in comune con il triangolo solo il vertice A, e indica con B' e C' le proiezioni ortogonali su di essa degli estremi dell'ipotenusa. dimostra che il segmento i cui estremi sono le suddette proiezioni è congruente alla somma di BB' e CC'.
la soLuzione indica che bisogna applicare il secondo criterio BB'A CONGRUENTE CON ACC'. se è possibile avere anche la figura, grazie, mi serve subito!

ciao ragazzi ho un dubbio....su due miei libri di analisi 2 ci sono due diverse definizioni di continuità a tratti,o per lo meno una è piu forte dell'altra...cioè,sul primo dice
una funzione e continua a tratti se è continua tranne in un numero finito di punti in cui presenta discontinuità di tipo salto.
la seconda è :
una funzione è continua a tratti se è continua tranne in un numero finito di punti in cui è presente discontinuità di tipo salto,od eliminabile....
queste due definizione sono ...

Ciao a tutti...domani ho un esame e non mi sono chiare alcune cose ...per favore potreste illustrarmi i seguenti punti : a,b,e
Vi ringrazio anticipatamente....

Ciao a tutti
Studiando statistica inferenziale, ho trovato degli argomenti che mi sono poco chiari: gli stimatori corretti e consistenti di media e varianza. Concettualmente ho capito di cosa si tratta...ma vorrei qualche esempio numerico di questi stimatori. Qualcuno di voi può aiutarmi? Grazie!!

Ciao a tutti
Stavo svolgendo questo esercizio, quando mi è sorto un dubbio...
Si considerino 5 v.a. discrete \(\displaystyle \begin{Bmatrix}
Xi
\end{Bmatrix}_{i=1}^{5} \) indipendenti e aventi la stessa densità definita da:
\(\displaystyle x_{k} \) 0 1 2 3
\(\displaystyle p_{X} \) 0.05 0.2 0.15 0.6
Devo calcolare la probabilità che \(\displaystyle X_{1} \) assuma valore 1 oppure 0.
Io avrei fatto ...

Ciao! Il prof. in una prova ci ha assegnato il seguente esercizio:
Sia $W\<=\RR^4$ il sottospazio generato da $w_1\=\((1),(2),(1),(0))$ e $w_2\=\((0),(1),(1),(3))$. Si trovi:
-La dimensione dell'annullatore
-Una base dell'annullatore
Sia $j:RR^4\->\(RR^4)^v$, dove $(RR^4)^v$ è il duale di $RR^4$, tale che $j(e_i)=e^i$, per $i=1, 2, 3, 4$ e dove $beta={e_1, e_2, e_3, e_4}$ è la base canonica e $beta^1={e^1, e^2, e^3, e^4}$ è la base duale. Determinare l'intersezione $j(W)\nn\AN(W)$, dove ...

Ciao a tutti, scusate il disturbo ma volevo chiedervi un opinione su questa domanda:
Sia f:R->R una funzione continua su tutto R e avante massimo relativo per x=0 è corretto affermare che f è derivabile per x=0 e la sua derivata in x=0 è nulla?
La mia risposta, spero corretta, è stata:
Essendo che se f è continua in un punto, qui 0, e derivabile in (a;0)unione(0;b) allora
f'(x) >0 in (a;0) e f'(x)
Qualcuno saprebbe aiutarmi per questo problema? :cry
grazie in anticipo!! :dontgetit

Con $ a> b> c $ , $ a_1> b_1> c_1 $ e $ a-b-c!= 0 $ e $ a_1-b_1-c_1!=0 $, allora $ (a+b+c)/(a_1+b_1+c_1)=((a-b)/(a_1-b_1)+(b-c)/(b_\1-c_1))*1/2=(a/a_1+b/b_1+c/c_1)*1/3=(a-b-c)/(a_1-b_1-c_1) $ , non lo riesco a dimostrare (non so nemmeno se è esatto, è una mia supposizione).

scusate raga se disturbo di nuovo ma mi è venuto un dubbio
quando ho un limite a 2 variabili x e y posso passare in cordinate polari imponendo x=r cos teta y= r sen teta
ora il dubbio è : e valido solo per x e y? cioe mi spiego meglio , se ad esempio devo calcolare la differenziabilita di una funzione mediante il limite per h k che tendono a 0 posso convertire pure h e k in cordinate polari?
esempio
lim hk che tendono a 0 di (radice di hk)/(radice di h^2 +k^2) posso convertire in polari?

Molto probabilmente è banale ma.. come faccio a dimostrare che una funzione è lineare?
So che deve rispettare la proprietà $f(ka+hb)\=\kf(a)\+\hf(b)$, ma nel concreto, se ho la funzione $f\:\RR^3\->\RR^3$ tale che: $f(e_1)\=\((1),(0),(1))$, $f(e_2)\=\((0),(1),(1))$, $f(e_1)\=\((2),(1),(0))$ dove $e_1, e_2, e_3$ sono i vettori della base canonica, come faccio a stabilire se è lineare?
Io so dimostrare che questi tre vettori formano una base, mi basta forse questo (che una funzione sia definita da una base ad una base) per ...

Un esercizio del libro mi chiede di dimostrare che se una funzione è dispari e continua in 0, allora f(0)=0. qualcuno sa come fare e può indirizzarmi? thanks

ho questa curva e devo passarla in forma cartesiana,ciò mi è difficile per il fatto che è il primo esercizio che mi capita una curva con sent e cost, se mi spieghereste il metodo ve ne sarei grato !
C (x=2 + 3cost
(y=1 + 3sent

Ciao a tutti. Vi scrivo per avere un parere...Cosa, secondo voi, occorrerebbe ripassare obbligatoriamente per quanto riguarda la geometria del biennio in modo da non avere problemi alla seconda prova della maturità di un PNI? So che la risposta dovrebbe essere "tutto", ma vorrei sapere la vostra opinione riguardo gli argomenti fondamentali.
Grazie:)

Date le seguenti funzioni
$2n log^3n , 4 root(3)(n log n), log n^4, n^log n, n^2 log n^3, n^n , n^5, (log n)^n, 10 root(4)n , $
$n log root(3)n , 7 log^3 n , n^3 root(3) n , 10 log log^2 n , 3 log n^4, n!, n^(1/log n)$
ordinarle scrivendole da sinistra a destra in modo tale che la funzione f (n) venga posta a
sinistra della funzione g(n) se f (n) = O(g(n)).
Allora io le ho ordinate come segue, l'unica cosa non ho inserito $n^(1/log n)$ perché non so se considerarla una sublineare visto l'esponente con frazione oppure se considerarla polinomiale...sapreste indicarmi come posso considerarla e soprattutto l'ordine di queste funzioni è ...

Dato il passaggio di una retta dal polo nord \((0,1)\) di \(\mathbb{S}^{1}\) ed un altro suo punto voglio sapere dove questa retta interseca il piano \(\mathbb{R}\times\{0\}\). Il punto deve essere espresso in funzione delle coordinate di \(\mathbb{S}^{1}\). Il punto generico di \(\mathbb{R}\times\{0\}\) è \((z,0)\) mentre le coordinate del cerchio unitario sono ad esempio \(x_{1}=(1-x_{2}^{2})^{1/2},x_{2}=(1-x_{1}^{2})^{1/2}\). L'equazione della retta ...