Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Ciao ragazzi, ho un piccolo dubbio, spero possiate aiutarmi.
Se ad un esame scritto vi venisse chiesto di verificare la trasformabilità secondo Fourier di una funzione, voi come procedereste?
Oltre a verificare che la funzione sia assolutamente integrabile in R, applichereste i restanti criteri di Dirichlet oppure verifichereste che la funzione sia sviluppabile in serie di Fourie?
Quale approccio secondo voi è quello richiesto dai docenti (purtroppo non posso chiedere direttamente alla ...

Ciao a tutti,provavo a risolvere questo esercizio di geometria analitica:Determinre l'equazione parametrica e cartesiana del piano perpendicolare a P(1,1,1) e passante per Q(-1,-1,0) non riesco a capire proprio come risolvere l'esercizio e impostare il sistema

ciao a tutti ho bisogno di una mano.
ho questo sistema 3x3 (nn riesco a metterli insieme ma parentesi graffa è una sola) con parametro =t
${(-tx+(t-1)y+z=1$
${(t-1)y+tz=1}$
${2x+z=5}$
come primo procedimento sviluppo la matrice delle incognite (mi scuso ancora per nn riuscire a metterlo graficamente in ordine, comunque penso rendi l'idea)
quindi
$A$
$-t+(t-1)+ 1$
$0+(t-1)+t$
$2+0+1$
questa è una matrice 3x3 per cui il rango è ...

Ammetto che questa tipologia di esercizi mi crea sempre un po di difficoltà XD.
Allora, ho $f :RR^3-> RR^3$ tale che $A=((1,0,2),(0,1,1),(1,1,2))$ è la matrice associata ad $f$ rispetto alla base canonica.
Detto $W=<(2,1,3),(0,1,0)>$, l'esercizio mi chiede di determinare $f^(-1)(W)$.
Ho che $f^(-1)(W)={v=xe_1+ye_2+ze_3 \in RR^3 | EE w \in W t.c f(v)=w=a(2,1,3)+b(0,1,0) , a,b \in RR}$.
Ho pensato di ragionare al seguente modo :
Detto $X= ((x),(y),(z))$ il vettore colonna delle componenti di $v$ rispetto alla base canonica e constatato che ...
sia $F(\omega)$ la funzione ottenuta dalla trasformata di fourier di $f(t)$, definita da $int_(-\infty)^(+\infty)f(t)e^(-i\omegat) dt $. Tale funzione $F$ è una funzione di variabile reale a valori complessi. Adesso la mia domanda è, $\Re(F(\omega)) $ indica la parte reale del coefficiente della serie di fourier della funzione cosenoialde di frequenza $\omega$ ? stessa cosa per la parte immaginaria ?

calcolare: $intint_A sen^3 (x^2+y^2) dx dy$
A è un quarto di corona circolare nel primo e nel quarto quadrante, delimitato inferiormente e superiormente dalle bisettrici dei quadranti, ed il bordo interseca l'asse x in $sqrt(pi/2) , sqrt(pi)$
se parametrizzo gli archi di circonferenza con ${x=rho cos theta , y= rho sin theta}$ con $ rho in [sqrt(pi/2) , sqrt(pi)] , theta in [pi/4,7/4pi]$
ottengo $ intint_A rho sin^3 (rho^2 cos^2 theta + rho^2 sin^2 theta)d rho d theta = intint_A rho sin^3 rho^2 = int_(sqrt(pi)) ^(sqrt(pi/2)) rho sin^3 rho^2 drho int_ (pi/4) ^(7/4pi) d theta$
l'integrale di destra è $6/4pi$ quindi diventa $6/4pi int_(sqrt(pi)) ^(sqrt(pi/2)) rho sin^3 rho^2 drho $
questo ho pensato di risolverlo per parti ma mi viene $1/2pi(sin^3 rho^2 -1)$ e mi torna ...

Ciao, sto impazzendo per capire il teorema di Langrange. Fin'ora sono arrivato alla conclusione che le ipotesi sono che f deve essere continua e derivabile in [a,b]. Cio' implica che Esiste c appartenente ad ]a,b[ tale che [f(b)-f(a)]/[(b-a)] = f'(c).
Poi c'e' la dimostrazione che non riesco a capire. La stavo vedendo su wikipedia http://it.wikiversity.org/wiki/Teorema_ ... _di_Cauchy
e mi sono bloccato a quando g(x) diventa g(a).
Secondo cio' che e' scritto, g(x) sarebbe la retta che passa per AB. Poi compare anche h(x) che ...

Ho la seguente disequazione:
$arctg(x^2-x) - arctg(4x-6) >=0$
Ho ragionato così: so che l'arcotangente è positiva quando il suo argomento è positivo... però ho portato $- arctg(4x-6)$ al secondo membro ottenendo:
$arctg(x^2-x)>=arctg(4x-6)$ ora so che la prima $ arctg$ è maggiore uguale della seconda se il suo argomento è maggiore o uguale dell'argomento della seconda $ arctg$ ... quindi ottengo:
$x^2-5x+6>=0 $ da cui $ x<=2 U x>=3 $ Giusto come ragionamento ?

Ciao a tutti!
ho fatto da qualche giorno l'esame scritto di Calcolo I e non riesco a capire perchè mi dicono che ho sbagliato la convergenza uniforme:
\$f(x)=\sum_{n=0}^\infty\frac{n!}{n^n}(x)^3n\$
sostituendo y=x^3 mi riconduco a una serie di potenze, applicando poi il criterio della radice trovo che il raggio di convergenza è e^1/3. La serie quindi converge puntualmente in (-e^1/3,e^1/3). Per studiare la convergenza uniforme ora studio la serie ai bordi dell'intervallo. cioè sostituisco prima x=e e poi x=-e
Ora io ...

Sto cercando una definizione più elegante per definire il punto di flesso... la definizione che ho è " $ x_0 $ è punto di flesso se $ sgn(x-x_0)*(f(x)-f(x_0)-f(x_o)(x-x_0)) $ non cambia segno in un intorno di $ x_0 $ "
Un altro dubbio sullo stesso argomento è il motivo per cui dire " $ x_0 $ è punto di flesso se la funzione cambia concavità/convessità in $ x_0 $" è sbagliato...
Cioè vorrei sapere quale delle due implicazione è sbagliata e per questa vorrei un ...

Ho questa equazione complessa di secondo grado:
$z^2 +(2+isqrt(2)+3i)z+(2i-sqrt(2))3=0$ e vorrei riportarla in forma più semplice da essere risolta, perchè la classica formula con il determinante si presta poco a questa equazione.
Io ho provato anche con il metodo $z^2 + S*z +P = 0$ ma non sono riuscito a venirne fuori. La soluzione mi riporta senza passaggi questa forma:
$(z+2+isqrt(2))(z+3i)=0$ che è corretta(l'ho controllata) ma non riesco a ricavarla dall'equazione iniziale. Come dovrei procedere?

x(x +y) + (x+y) (x-2x) + (-2x^2y)^3 : (-2x^8y^2) - ( 2x) (-y)

Espressioni con polinomi (99793)
Miglior risposta
[(a-1) (a-2) (a-3) - (a+1) (a+2) (a+3)] : (-4)

Mi sono trovato davanti a questo esercizio che concettualmente è scontato ma non riesco a dimostrarlo...
Dimostrare o confutare: "Sia $ f:X->Y $ , sia $ x inX $ . Se $ x $ è punto isolato, allora $ f(x) $ non è punto di accumulazione"
Ragionando su questo mi è venuto un dubbio (probabilmente è una cosa banale): Sia $ f:NN->RR $ , perché non ha senso studiare l'andamento in un intorno di $ f(n) $ ... cioè a me verrebbe da pensare che mi ...
Metodo di studio per matematica? Aiutatemi per favore
Miglior risposta
Metodo di studio per matematica? Come posso andare bene in matematica e geometria per le superiori? Consigli? Grazie :)

ciao a tutti sto svolgendo degli esercizi presenti sul forum sulle derivate però ho un problema con questa
http://appunti.****/appunti/ ... x-5685.htm
non so se sarò chiaro ma comunque ci provo
allora:
nel primo passaggio:
$1* sinx$ il numero 1 è la derivata di x,
che moltiplica sinx che è la non derivata del secondo elemento
+ x che è la non derivata del primo elemento,
che moltiplica la derivata del secondo ossia
$x*(cosx)$
Da quì in poi si riprende con la regola di derivazione di una funzione ...

Salve avrei un dubbio sui limiti di funzioni continue. Mi si è presentato questo esercizio:
lim (2x^2+ 5x -3) / (x^2 + x - 6)
x->-3
il risultato è 7/5 ed esce utilizzando ruffini. Ho provato l'altra via, cioè quella di semplificare il numeratore e il denominatore ai minimi termini. In questo caso, facendola e rifacendola mi torna sempre 7/10 .
Probabilmente sbaglio in qualcosa, derivante da qualcosa che ho capito male. Non dovrebbe uscire lo stesso risultato? Se la risposta è negativa, ...

Dire se la forma differenziale:
w= $ (x+y)/(x^2+y^2)dx-(x-y)/(x^2+y^2)dy $
è esatta, e dire quanto vale il suo integrale sulla curva d'equazione (t, $ t^2 $ -1) per t tra -1 e 1.
Allora, prima di tutto mi determino dove è definita w.. ed è definita sugli (x,y) tali che $ x^2+y^2 != $ 0 e quindi ovunque tranne che per l'origine?.. se fosse giusto così, l'insieme non sarebbe semplicemente connesso (quindi non posso dire che w esatta se e solo se w chiusa) e quindi, devo prima verificare che la ...

ho questa forma:
[tex]2(y-x)/(1-(y-x)^2)dx + 2(x-y)/(1-(y-x)^2)dy[/tex]
il testo chiede di stabilire in quali regioni del piano la forma è esatta. per fare questo, io ho integrato rispetto a y il primo pezzo, rispetto a x il secondo e li ho uguagliati, trovando l'equazione
[tex]y =x^2[/tex]
è giusto fare così?
successivamente, chiede di calcolare il suo integrale lungo la curva parametrizzata da
[tex]r(t) = (t, sen(pi*t)/(2+cos(t))+3/2+t)[/tex]
e qui sorge qualche bel problema, dovrei ...

salve!
sistema di eq. differenziale del secondo ordine:
$x'' = sin (2 \pi (x+y)) + \alpha x$
$y'' = 2 x + a y$
la parte di trovare punti stazionari l'ho fatta ed è lunghetta da scrivere, ma chi vuole dargli una sbirciatina posso scriverlo in spoiler dal momento che non è l'argomento del mio topic . . .
Nel frattempo:
devo linearizzare intorno all'origine.
specialmente:
$sin (2 \pi (x+y)$
$\nabla sin (2 \pi (x+y)) = (2 \pi cos (2 \pi (x+y)) , 2 \pi cos (2 \pi (x+y)))$
calcolato in $(0,0)$ ottengo:
$\nabla = (1,1) *2 \pi$
matrice ...