Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Salve ragazzi, non riesco a capire del perché se \( g:[a,b]\rightarrow [c,d] \) è un cambiamento ammissibile di variabile per due curve, lo è anche la funzione inversa di \( g \). Ho capito che in un certo senso "gode delle stesse proprietà di \(g\)" ovvero che è \( C{}^1 \), invertibile e monotona.
Per precisare meglio, siano due curve:
\( \varphi : [a,b]\rightarrow R^n \)
\( \psi : [c,d]\rightarrow R^n \)
allora ogni funzione \( g:[a,b]\rightarrow [c,d] \) tale che \( g\in C^1 ...
Salve, io ho questo esercizio:Sia $L = \{0^n 1^n | n \ge 0\}$. Indicare quali tra i seguenti linguaggi sono regolari.
(a) H(L) = {x | ∃y tale che xy ∈ L e |x| = |y|}
(b) B = {0^n | n ≥ 0} ◦ L ◦ {1^m | m ≥ 0}.
Io ho dimostrato con il pumping lemma che il primo è regolare, ma il secondo no. Secondo voi è così o ho sbagliato?
Buonasera a tutti.
Sul web ho trovato questo limite da risolvere con gli sviluppi di Taylor:
$ \lim_{x -> 0} {\cos^2(x) + x^2 -1}/{x^4} $
la cui soluzione è $ 1/3 $.
TENTATIVO MIO (sbagliato):
1) Sapendo che:
$ \cos (x) = 1 - {x^2}/2 + o(x^2) $ per $ x -> 0 $
trovo:
$ \cos^2 (x) = ( 1 - {x^2}/2 + o(x^2) )^2 = $
$ = 1 + {x^4}/4 + (o(x^2))^2 - x^2 + o(x^2) - x^2 o(x^2) = $
$ = 1 - x^2 + {x^4}/4 + o(x^2) $
2) Sostituendo nel limite dato:
$ \lim_{x -> 0} {1 - x^2 + {x^4}/4 + x^2 - 1 + o(x^2)}/{x^4} = \lim_{x -> 0} {{x^4}/4 + o(x^2)}/{x^4} $
3) Risulta quindi:
$ \lim_{x -> 0} {{x^4}/4 + o(x^2)}/{x^4} = 1/4 $
SOLUZIONE CORRETTA:
1) Poiché $ \sin^2 (x) + \cos^2 (x) = 1 $, allora $ \cos^2 (x) - 1 = - \sin^2 (x) $.
2) Considerando lo sviluppo ...
Per l'attraversamento veloce dello stretto di Messina sono stati presentati molti progetti, uno dei quali prevedeva un tunnel sottomarino a sostegno idrostatico. Si trovi la condizione di idrostaticità di una sezione del tunnel a sezione circolare di raggio interno $R=5,01m$ calcolando opportunamente lo spessore del materiale del tunnel di densità $rho=3,44xx10^3 (Kg)/m^3$
Salve,
sto cercando di risolvere il seguente integrale:
\[
\beta_{\omega\omega'}=\frac{1}{4\pi\sqrt{\omega\omega'}}\,\int_{-\infty}^\infty\,du\, \exp\left[-i\,\omega\,u+i\frac{\omega'}{\kappa}e^{-\kappa u}\right]\,\left(\omega'\,e^{-\kappa u}-\omega\right)
\]
il cui risultato è ...
Con tre punti si puo sidegnare massimo un triangolo,con 4 punti massimo 3.Se si disegnano 2016 punti su
un foglio del quaderno, quanti triangoli (che non si sovrap- pongono neanche parzialmente al loro interno) si ottengono al massimo?
Identità logaritmica
Miglior risposta
Buongiorno sro svolgendo:"verificare l'uguaglianza
"Log(3)5+log(9)5+log(27)5/(log(81)5+log(9)25)=22/15"
Ho portato tutto in base 5
1/log(5)3+1/log(5)9+1/log(5)27/[1/log(5)[3×9×27]] ma non viene 22/15, mi risultano dei numeri enormi.
Per favore potreste aiutarmi? Grazie infinite
La probabilità di contrarre la varicella entro i 10 anni è P=0,73.
Calcolare la probabilità che in un campione di 200 bambini ce ne siano almeno 150 che hanno la stessa malattia.
Io so che la binomiale ha forma Media: $ np $ e Varianza: $ np(1-p)/n $
Ma a volte si usa l'approssimazione alla normale con Media: $ p $ e Varianza: $ p(1-p)/n $
Mi potete spiegare come si svolge questo esercizio e in generale quando utilizzare una forma,e quando l'altra.Il ...
Mi serve che qualcuno risolva questi esercizi entro le 10
Buonasera sto cercando di risolvere questo limite ma non riesco ad arrivare ad una conclusione
$lim_(n->\infty)(1/2n^(1/n)+sin(n!)/n)(sqrt(1+8n^2)-n)/(log(1+e^(n+2))-n/2)$
Ho provato a risolvere in questo modo :
$n^(1/n) = 1$
$sin(n!) ~ n!$ per $n->\infty$
$(sqrt(1+8n^2)-n) = n(sqrt(8)-1)$
$log(1+e^(n+2)) ~ e^(n+2)$ per $n->\infty$
quindi..
$lim_(n->\infty)(1/2+(n!)/n)(n(sqrt(8)-1))/(e^(n+2)-n/2)$
Ho fatto altre svariate prove ma niente da fare, non riesco a capire cosa manca per risolverlo
Mi potreste aiutare a fare questi esercizi perché sono in preparazione alla verifica di domani ?grazie.
Ciao a tutti! Io ho appena conseguito la laurea triennale in matematica e ho deciso di imparare a programmare. Conosco le basi del C++ e di Matlab e un mio amico mi ha consigliato di provare il Python. Vorrei chiedervi se mi consigliate di studiare qualche linguaggio in particolare; diciamo che vorrei "buttarmi" su qualcosa che sia stimolante per un laureato in matematica e che possa anche risultare utile a livello lavorativo.
Grazie in anticipo!
Salve a tutti. Vorrei chiedervi: il multiplo di un monomio positivo (per es. $2a$) può essere un monomio negativo ($-2a$)? Ovviamente, per definizione, il multiplo di un numero $n$ è quel numero $n$ moltiplicato per la successione dei numeri naturali. Leggo però dal mio libro che quando si parla di mcm di due o più monomi si fa riferimento al VALORE ASSOLUTO del coefficiente; dunque si può semplificare dicendo che la funzione che associa ad ...
Buon pomeriggio a tutti,è da un po' che non riesco a capire le reazioni vincolari.
Vi pongo subito un esercizio in quanto ho delle domande a riguardo
Un corpo puntiforme di massa $m = 200 g$ è vincolato a muoversi al di sopra di una rotaia circolare di raggio $R=50cm$ posta orizzontalmente con velocità angolare $w = 3 (rad)/s$
Calcolare il modulo della reazione vincolare agente sul corpo.
Svolgimento
Le equazioni del moto sono ...
We
È una domanda abbastanza breve:
Se ho due spazi vettoriali la cui intersezione su $CC$ è non nulla, considerando i medesimi su $RR$, può capitare che l'Intersezione venga nulla?
In particolare tra uno spazio dato per caratteristica e uno per generatori.
Ciao a tutti,
ho bisogno di copiare e incollare delle immagini pdf su Word, il problema è che perdono molto in qualità e diventano sgranate. Si tratta principalmente di istogrammi, con il risultato che i titoli sugli assi ad esempio si vedono male. Qualcuno può suggerirmi una soluzione ? Su Latex succede la stessa cosa ?
non riesco a risolvere le seguenti disequazioni fratte, mi escono con un risultato errato, potete gentilmente risolverle passo per passo con la spiegazione?
EDIT: scusate ma mio fratello non riusciva a scriverle in modo corretto comunque ecco qua,inoltre sono equazioni e non disequazioni:
1) $(3x+1)/(x+2)+(1-2x)/(x-2)=(x-0)/(x+2)$
2) $(x+1)/(2x+1)=1-(1+x)/(x-1)$
3) $(x)/(x+2)-(1-x)/(x-2)=2$
grazie in anticipo
Ciao a tutti, potreste aiutarmi?
Siano X, Y v. a. discrete indipendenti con la stessa distribuzione m appartenenti a [tex]L^2(\Omega, P)[/tex].
Sia [tex]P_J[/tex] la distribuzione associata a una generica v. a. J. Supponiamo che [tex]P_{X+Y} = P_{2X}[/tex], si caratterizzi m.
Detta q la densità associata a X (e quindi a Y), l'unica cosa che son riuscito a trovare (se è giusta) è che [tex]\Sigma_{t \in \mathbb{R}} (q(z+t) \cdot q(z-t)) = q(z)[/tex]. Da qui non riesco ad andare avanti, e non so ...
$int_0^4 (sqrtx/(sqrtx+1)dx$
ho sostituito $sqrtx=t$ e $dx=2tdt$
quindi
$int1-(2t)/(t+1)dt$
ho scomposto tutto l'argomento dell'integrale in somma di integrali, aggiungendo al numeratore $1,-1$
e a seguito dell'integrazione ho:
$t-2t-log(t+1)|_0^4$
ho sostituito e risulta $-2-log3$ e non $2log3$ come dice la soluzione. Why?
----------------------------------
$int_(1/e)^e 1/(x(logx)^2)dx$
conviene per parti?Integrando il log e derivando 1/x? Ho provato, e vien ...
Ciao a tutti!
Oggi sono qui perché ultimamente sto avendo seri problemi col metodo di somiglianza per equazioni differenziali non omogenee del secondo ordine. I libri di testo forniscono veramente pochissimi esempi di utilizzo di tale metodo, preferendo quello della variazione delle costanti, il che è un vero peccato, visto che il metodo di somiglianza dovrebbe essere più veloce.
Qualcuno potrebbe spiegarmi in modo esauriente come si usa il metodo di somiglianza nelle equazioni differenziali ...