Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
rombo1
L'implicazione logica di due proposizioni $p$ e $q$ si scrive come $p->q$, ma è possibile riscriverla con un equivalenza logica tramite il connettivo $ \vee$ cioè: $p->q = \not(p) \vee q$. In questo senso le tabelle di verità delle due formule logiche sono equivalenti. Domando: I quantificatori universali "per ogni" $\forall$ ed "esiste" $\exists$ hanno anche loro un'equivalenza di questo tipo, tramite i connettivi elementari ...
2
28 ago 2018, 08:52

matteo_g1
Ciao, ho problemi ad impostare il seguente esercizio: in un sistema di coordinate sferiche, è dato il campo elettrico: $ r<Ro ->vec(E)=(k*(r^2))/(4*epsi)*hat(r) $ $ r>Ro ->vec(E)=0 $ con k costante positiva Mi viene chiesto di calcolare la carica elettrica presente sulla superficie sferica individuata dalla relazione $ r=Ro $ Come impostereste il teorema di Gauss in questo caso?

teresa.08
Qualcuno potrebbe darmi una mano a risolvere queste equazioni ( solo quelle evidenziate )??!!.....Non riesco proprio a risolverle :( Grazie mille davvero a chi mi aiuterà :D :D
10
27 ago 2018, 18:45

Appinmate
Buongiorno! Vi propongo come pensavo di svolgere il seguente studio di funzione: $int_{1}^{+infty} (sen|t|)/(t^5+1)dt$..Per quanto riguarda il dominio ho trovato che è $(-1;+infty)$ in quanto in $-1$ l'integrale diverge ( prima domanda: ha senso "tirare fuori" dall'integrale $sen|x|$ perché in $-1$ non ha problemi di definizione? (risolvo cioè $-sen|x|int_{-1+}^{1}1/(t^5+1)dt$ e essendo $1/(t^5+1)$ divergente positivamente, $-sen|x|$ una quantità negativa si può concludere in ...
15
27 ago 2018, 11:09

Appinmate
Rieccomi con un nuovo dubbio .. l'integrale in questione è: $int_{0}^{+infty}(arctgx)^3/(x^a*log(1+x))dx$ .. In zero non ho avuto problemi a determinare la convergenza ma a $+infty$ pensavo di maggiorarlo a $(pi/2)^3/(x^a*(1+x))$ e studiare questo.ho paura di perdermi degli a tale per cui l'integrale di partenza converga a $+infty$... il testo del problema mi dice anche che deve essere a>0.. Qualcuno riesce ad aiutarmi? Grazie in anticipo!
4
28 ago 2018, 17:09

Søren13
Dovrei svolgere questo esercizio: Un astronave viaggia a $3/5c$. Quando l'orologio dell'astronave indica che è passata un'ora viene lanciato un segnale luminoso. Secondo l'osservatore sull'astronave quanto tempo dopo la partenza il segnale arriva a Terra? Ho provato a svolgerlo in questo modo: $s_a=vt_a=3/5c *1h$, dove con $t_a$ e $s_a$ intendo il tempo e lo spazio misurati dall'astronave. Ottengo quindi che il tempo totale è dato da $1h+3/5h=8/5h$. ...

EdgarVillier
Anzitutto grazie anticipatamente, e spero che possiate essermi d'aiuto su il seguente limite parametrico. La mia difficoltà è su \(\displaystyle log^a|x| \), non riesco a stimarlo .... cosa dovrebbe essere \(\displaystyle (-\infty)^a \) ??? Che con a pari è positivo e con a dispari è negativo ????? Il limite che devo calcolare è \(\displaystyle \lim_{x \to 0} x log^a|x| \) con il parametro a > 0 1)Ho pensato a Taylor ma non riesco a calcolarne lo sviluppo 2) ho scartato Hopital perchè ...

Appinmate
Buongiorno vorrei chiedervi se è esatto il modo con cui pensavo di calcolare i limiti agli estremi del dominio(a - infinito) di questa funzione integrale: $int_{0}^{x} (e^(-t)(t-1))/sqrt(t^2+t+2)dt$: $int_{0}^{-infty} (e^(-t)(t-1))/sqrt(t^2+t+2)dt$.. è corretto porre $t=-y$ e da questo ricavare che $dt=-dy$ e quindi l'integrale è riscrivibile come $-int_{0}^{+infty} (e^y(-y-1))/sqrt(y^2-y+2)dy$ e questa diverge a più infinito quindi anche l'integrale di partenza ha questo comportamento in un intorno di meno infinito. è esatto?
4
27 ago 2018, 18:30

mic85rm
ragazzi qualche suggerimento su questi esercizi: $ int_( )^( ) (x^2+x)/(x^2+16) dx $ qui spezzo l'integrale cosi' $ int_( )^( ) (x^2)/(x^2+16) dx + int_( )^( ) (x)/(x^2+16) dx $ la seconda parte è di facile soluzione e viene $ 1/2 log(x^2+16)+c $ per la prima parte non so come comportarmi... $int_( )^( ) 2/(x^2-3) dx $ qua invece posso riscrivere l'integrale cosi: $ int_( )^( ) ((1/sqrt3)/(x+sqrt3)dx - int_( )^( ) ( -1/sqrt3)/(x-sqrt3))dx $ risultato SBAGLIATO è $ (1/sqrt3)log |((x-sqrt3)/(x+sqrt3))|+c $ sul libro è $ (sqrt3/3)log |((x-sqrt3)/(x+sqrt3))|+c $ grazie
3
28 ago 2018, 22:08

salvo107
Quanti sono i numeri naturali pari di 8 cifre aventi le prime tre cifre pari e in ordine crescente e le ultime due in ordine decrescente? Giustificare la risposta. buon pomeriggio, ho sempre dei problemi con il calcolo combinatorio, qualcuno gentilissimo potrebbe spiegarmi nello specifico come si arriva a, soprattutto per dissipare alcuni dubbi sul valore di n oggetti e k posti : $C_{4,3}$ * $10^3$ * $C_{10,4}$
4
25 ago 2018, 15:16

Rebb10
Ciao a tutti, ho dei dubbi riguardo questo esercizio Data l'applicazione lineare f: $RR^3$ $rarr$ $RR^3$ tale che: f($e_1$)= $e_1$+h$e_3$ ; f($e_2$)= h$e_1$+$e_2$; f($e_3$)= 3$e_1$+h$e_3$ a) stabilire per quali valori del parametro h $in$ $RR$ risulta $RR^3$= Imm(f)⊕ker(f) b) Dato un endomorfismo f ...
1
28 ago 2018, 17:42

layla901
Buonasera a tutti! Stavo guardando la dimostrazione della formula dell'errore di interpolazione in questa dispensa "http://www.ing.unitn.it/~bertolaz/2-teaching/appunti.pdf" Il mio dubbio riguarda il fatto che ad un certo punto viene detto che la funzione G(z,x) si annulla in n+2 punti e, per il teorema di Rolle, la sua derivata prima si annulla in n+1 punti. Non capisco quest'ultima affermazione. Essendo la funzione continua e derivabile e applicando il teorema di Rolle in ciascun degli n+1 ...

GCass@22
Salve a tutti, mi sto allenando per un esame in vista e mi trovo in contraddizione con un esercizio di una vecchia data d'esame. Partiamo dall'inizio, essendo una macchina di Carnot ed avendo il valore numerico del lavoro scrivo l'equazione che lega il lavoro ed i calori relativi al ciclo stesso. \(\displaystyle L = Qass - Qced\) Successivamente, siccome ci sono in gioco le entropie, uso la formula inversa della variazione di entropia \(\displaystyle ΔS = \int_a^b \frac {dQ}{T}\) Ed ...

Andreaolivotto
Ciao non riesco a capire come risolvere questo esercizio : Calcolare ê: operatore di discesa ê+: operatore di salita 0 credo che sia la funzione di punto 0 dell'oscillatore armonico

marioslaz
Buongiorno a tutti. Sono perfettamente consapevole che sull'argomento ci sono altre discussioni, ma il mio dubbio verte su una soluzione di un esercizio che non condivido e vorrei il Vostro parere. Ecco il testo: Determinare il numero di permutazioni del gruppo simmetrico $S_5$: a. che hanno periodo 3 b. che hanno periodo 6. SOLUZIONE Per determinare l'ordine di una permutazione è necessario scriverla come prodotto di cicli disgiunt e calcolare il minimo comune multiplo ...

vivi996
Buongiorno. Volevo chiedervi delucidazioni su questa funzione $g(x)=(6-x)logx-xlog(6-x)$. Mi chiede di provare che esistono $z_1in(2,3)$ e $z_2in(3,4)$ tali che : $g'(x)>0 in (0,z_1)$, $g'(z_1)=0$, $g'(x)<0 in (z_1,z_2)$, $g'(z_2)=0$, $g'(x)>0 in (z_2,6)$. E poi di trovare gli zeri gi $g(x)$. Allora, intanto faccio la derivata e la pongo =0 : $g'(x)=(6-x)/x-logx-log(6-x)+x/(6-x)=0$ avrò $(6-x)^2-x(6-x)logx-x(6-x)log(6-x)+x^2=0$ Ora mi è poco chiaro come studiare questa funzione.
10
26 ago 2018, 13:31

giuseppeangora
Salve, vi propongo il seguente esercizio di elettrostatica che in parte non ho compreso. Un conduttore sferico cavo di raggio interno R2=2 cm e raggio esterno R3=3 cm possiede una carica pari a Q0=3×10-4 C. All’ interno viene posto un altro conduttore sferico, di raggio R1=1 cm, concentrico al primo, con un’ulteriore carica pari anch’essa a Q0. Ad una distanza L=3 m dal centro dei conduttori è posta una piccola carica puntiforme q0= - 2×10-7 C. a) Calcolare la forza esercitata sulla carica ...

nico97it
Quando la reazione vincolare si annulla, avviene il distacco del corpo dalla superficie di appoggio? Inoltre avrei un ulteriore domanda. Nel caso di un corpo che si muove su una guida circolare su piano verticale, "giro della morte", la risultante della reazione vincolare e della forza peso è radiale e centripeta solo nel punto più alto e nel punto più basso giusto?

HowardRoark
Non riesco a capire la formula che dà il mio libro sulla distanza di un punto da una retta, ovvero $d = |(ax_0 + by_0 + c) | / sqrt(a^2 + b^2). $ Non dà dimostrazioni: c'è solo un esempio nel quale considera un punto $P$ e una retta $r$, dove poi traccia da $P$ le parallele agli assi fino a incontrare la retta nei punti $A$ e $B$. Quindi da $P$ viene tracciata l'altezza relativa all'ipotenusa $PH$, e successivamente ricava ...
11
28 ago 2018, 12:44

matteo_g1
Ciao sto risolvendo il seguente integrale: $ int1/(d-x)^2*dx=-int(d-x)^-2*(-1)*dx=-(d-x)^-1/-1=1/(d-x) $ Ora se l'integrale fosse definito fra $ -L/2 $ e $ L/2 $ otterrei: $ 1/(d-L/2)-1/(d+L/2)=((d+L/2-d+L/2))/((d-L/2)*(d+L/2))=(L)/((d-L/2)^2 $ che è diverso dalla soluzione ottenuta con wolframalpha: Riuscite a capire il problema?
3
28 ago 2018, 17:25