Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Ciao, stavo svolgendo questo esercizio:
Data la forma differenziale: $omega=(x-1)/((1-x)^2+y^6)dx\ +\ (3y^5)/((1-x)^2+y^6)$ calcolare $int_V omega$ essendo $V$ la curva che ha per sostegno l'arco di circonferenza $x^2+y^2-2x=0$ che ha per estremi $(0,0)$ e $(2,0)$ percorso nel verso antiorario.
Nello svolgere l'esercizio ho disegnato la mia circonferenza, cioè la circonferenza di centro 1 e raggio 1, l'ho pure parametrizzata ecc..
Ora il problema che sorge è che: calcolando le derivate ...

Ciao a tutti ho questo esercizio:
Una sfera di raggio R2=8 cm e centro O è uniformemente carica con densità di carica volumica $rho=6,4*10^(-4) C/M^3$, salvo una cavità di forma sferica, di raggio R1= 2cm il cui centro O’ dista d=2cm dal centro O. Calcolare:
a. il campo elettrico nel punto O
b. il campo elettrico nel punto O’
[fcd="figura"][FIDOCAD]
FJC B 0.5
EV 80 85 140 25 0
MC 85 55 0 0 elettrotecnica.com19
MC 95 55 0 0 elettrotecnica.com19
MC 110 55 0 0 elettrotecnica.com19
MC 125 55 0 0 ...
Sono confuso.
\( f(z)=1/z \) ha un polo semplice in \(0 \) il cui residuo è \( 1 \).
\( f(1/z) = z \) dovrebbe essere analitica in \( 0 \) e senza residuo, pertanto la funzione \( f(z) \) dovrebbe essere essere analitica all'infinito pertanto avere residuo \(0 \).
Ma \( res(f,\infty)=res( -f(1/z)/z^2,0 ) = - res(1/z,0)= -1 \)...
Se è analitica all'infinito non dovrebbe avere residuo \(0 \) ?
Salve a tutti. Avrei un problema con questo sistema di numeri complessi:
${(2bar(z)−iw+9i=0),(z^2-bar(w)=8isqrt(3)):}$
sostituendo dalla prima equazione w nella seconda i risultati mi vengono giusti
$z=3i+2sqrt(3)$
$w=3−4isqrt(3)$
$z=−i−2sqrt(3)$
$w=11+4isqrt(3)$v
Dopo ho provato a sostituire w dalla seconda alla prima(so che non serviva visto che già mi risultava però ho voluto provare) e non so cosa sbaglio ma non mi viene. E' da 1 ora che ricontrollo ma niente. So che è un problema stupido ma riuscite ad ...


Buongiorno, ho il seguente sistema lineare \( \begin{cases} x_1+x_2+2x_3 = 5 \\ 3x_1-2x_2+x_3=0 \\ 7x_1-3x_2+4x_3=6 \end{cases} \) di cui devo calcolare il rango (per poi poter utilizzare il teorema di Rouche-Capelli).
Il rango della matrice incompleta (cioè quella con i soli coefficienti) è 2. Fin qui niente di particolare.
Nel momento in cui associo i termini noti (e cioè ottengo la matrice completa) il rango dovrebbe essere 3. Da quello che so però i termini noti non possono essere dei ...
Non capisco un paio di cose della dimostrazione (in grassetto i miei commenti)
Sia \( U \subsetneq \mathbb{C} \) un dominio semplicemente connesso e \( z_0 \in U \), denotiamo \( \Sigma_{U,z_0} \) l'insieme delle applicazioni olomorfe \( f:U \to \mathbb{D} \) che sono iniettive e tali che \( f(z_0)=0 \) e \(f'(z_0) >0 \). Dimostriamo che \( \Sigma_{U,z_0} \neq \emptyset \)
L'idea è che se possiamo trovare un intorno di un punto di \( a \) che dista almeno \( r \) da \(U \) allora è ...
Dimostrare che se \( f: \mathbb{C} \setminus \{ z_1, \ldots, z_n \} \to \mathbb{C} \) è olomorfa allora la somma dei residui è zero.
Sarà un problema di segno ma non lo trovo.
Dimostriamo
\[ \sum\limits_{j=1}^{n} res(f,z_j) + res(f,\infty) = 0 \]
Con \( M \) molto grande abbiamo che
Per definizione
\[ res(f,\infty) = res(- f(1/z)/z^2,0)= - \frac{1}{2 \pi i} \oint_{\partial D(0, 1/M)} \frac{f(1/z)}{z^2} dz = \frac{1}{2 \pi i } \oint_{\partial D(0,M)} f(z) dz \]
Al contempo
\[ \frac{1}{2 \pi i ...
Esistono delle funzioni olomorfe non costanti e limitati nei seguenti spazi? Se si trovale esplicitamente
i) \( f: \mathbb{C} \setminus \mathbb{R}_- \to \mathbb{C} \)
ii) \( f: \mathbb{C} \setminus \mathbb{R}_+ \to \mathbb{C} \)
iii) \( f: \mathbb{C} \setminus i\mathbb{R}_+ \to \mathbb{C} \)
iv) \( f: \mathbb{C} \setminus i\mathbb{R}_- \to \mathbb{C} \)
Io direi di sì. Per il primo spazio \( g(z) = \frac{1}{\sqrt{z} +1} \) dovrebbe andar bene in quanto la radice è ben definita su \( \mathbb{C} ...
Salve non riesco a risolvere il punto 2 di questo esercizio.
Il testo è il seguente:
Il ricavo annuale di un nota banca è descritto con una distribuzione normale di media 1,5 e deviazione standard 0,5.
Calcolare:
1) la probabilità che in una dato anno la banca vada in perdita.
2) l'intervallo di valori (centrato sul valore medio) che include il 95% dei risultati.
Allora il primo punto l'ho impostato così
$ P(X<=0) = P(Zo<=0) = P(Zo<=((0-1.5)/0.5) = P(Zo<=-3) = phi(-3) = 1- phi(3)= 1-0,99865 = 0,00135 = 0,135% $
È corretto?
Inoltre il secondo punto come dovrei impostarlo?
...
Sia $ f : V rarr V $ una applicazione lineare che ammetta almeno un autovalore λ. Prendiamo v ∈ V che non sia un autovettore. E’ vero che l’autospazio V (λ) e il sottospazio $ < v> $ sono in somma diretta?
Allora $ V(lambda ) = (win V : f(w) = lambda w) $ quindi visto che v non è autovettore non appartiene all'insieme quindi $ V(lambda ) nn < v> = 0 $ .
Come faccio a dimostrare che la loro somma è uguale a V?
Salve.
Ho alcune difficoltà nel trovare in versore normale ad un piano $\pi$ nello spazio in una specifica situazione.
Non ho problemi se forniti 3 punti appartenenti al piano o se sono forniti direttamente due vettori:
Ne faccio il prodotto vettoriale:
$ det( ( \vec{e_x} , \vec{e_y} , \vec{e_z} ),( x_1 , y_1 , z_1 ),( x_2 , y_2 , z_2 ) ) $
Dove $ ( x_1 , y_1 , z_1 ),( x_2 , y_2 , z_2 ) $ sono i due vettori appartenenti al piano o ricavati come differenza dai 3 punti $\in \pi$. Procedo poi normalizzando il vettore ed il gioco è fatto.
Mi è capitato un paio di volte ...

Ho cinque valori di prove sperimentali. Lo so sono pochi, ma si tratta di prove sperimentali. Volevo sapere se era possibile con excell trovare e plottare la gaussiana di best fitting.
Se non con excell anche con altri programmi tipo matlab o mathematica o mathcad va bene uguale.
grazie
Chissà se qualche anima buona può sciogliere un dubbio che mi trascino da quel dì.
Nel caso qui esposto
immaginiamo prima la spira ABCD.
se il campo magnetico B (entrante) aumenta nel tempo, nella spira circola corrente in senso antiorario.
Se ora ruotiamo la spira intorno al lato AB, fino a diventare ABC'D', anche qui la corrente è antioraria.
Quindi, nel primo caso, la corrente va da B ad A; nel secondo da A a B.
Ora eliminiamo tre lati della spira e lasciamo solo il lato ...

$ intf*n ds $ dove $f(x,y,z)=(4x,2y,3z) e S={(x,y,z: x^2/16+y^2/4+z^2/9=1}$
per svolgere questo tipo di integrale c'è bisogno di applicare qualche teorema?
non so come affrontarlo..
ho provato ad impostarlo, ma non sono per niente convint
$int 4x ds n int 2y n ds int 3z n ds $
possibili risultati:
1) $144 pi$
2)$ 288 pi$
3)$ 77 pi$
4) $216 pi$

Ho dei dubbi nel risolvere i max e i min vincolati quando la funzione risulta costante sul vincolo
Il testo è il seguente:
$ f(x,y)=y^4-3y^3lnx+2ln^2x $
Vincolo:
$ G={(x,y)\in R^2: 1<=x<=e, (lnx)^(1/2)<=y<=(2lnx)^(1/2)}$
In pratica disegno il vincolo e lo divido in tre curve
$\gamma1: y=(2lnx)^(1/2)$ con $ 1<=x<=e $
$\gamma2: y=(lnx)^(1/2)$ con $1<=x<=e $
$\gamma3: x=e$ con $1<=y<=(2)^(1/2) $
Ora andando a studiare la prima ho:
$ f(x;(2lnx)^(1/2))=4(lnx)^2-6(lnx)^2+2(lnx)^2=0$
Normalmente farei la derivata per trovare i max e min, ma se la mio funzione è 0 la derivata sarà ...

Ciao, ho un dubbio.
Guardando sui miei appunti di analisi complessa, mi trovo il teorema di trasformazione di Fourier di una derivata:
Sia $f\in L^1(\mathbb{R})$, tale che esistano (q.o.) le sue derivate fino alla n-esima, tutte in $L^1(\mathbb{R})$. Allora $F(f^((n))(x))(\xi)=(2i\pi)^n \xi^n F(f(x))(\xi)$ (con F denoto la trasformazione di Fourier).
Ora leggo sui suddetti che queste ipotesi in realtà non sono sufficienti. Infatti per dimostrarlo utilizza (lavorando per esempio per n=1) l'integrazione per parti (che vale comunque ...

Buongiorno!
Prima di tutto, una nota: il post può sembrare lungo perché ci sono alcuni miei ragionamenti, ma tranquilli...
i dubbi, in sè, sono molto coincisi. Detto questo..
Avrei 3 dubbi sul moto smorzato, che riguardano un problema.
Io so che, in generale, la legge oraria per il moto smorzato in una dimensione è la seguente:
Problema
Un punto materiale di massa $m = 1 kg$ entra in un fiume profondo $h = 3 m$ con una velocità di ...
Ragazzi le ho provate tutte con la seguente serie che converge ma non riesco a dimostrarlo.
$ sum_(n = 0)^(+oo ) (-1)^n*(2^n+n!)/((n+1)!) $
- Convergenza assoluta + Criterio rapporto = inconcludente (limite = 1)
- Convergenza assoluta + Criterio radice = inconcludente (limite = 1)
- Convergenza assoluta + Criterio confronto = inconcludente (risulta la somma di una serie divergente più una convergente)
Qualcuno ha idea su come potrei procedere con Leibniz per affermare che $ a_(n+1) <= a_n $ è l'unica opzione che ho ...