Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Salve a tutti, devo dire che anche la semplice consultazione del forum mi ha aiutato parecchio, ora però avrei qualche domanda alla quale non riesco a trovare risposta cercando nei 3d. ho questo esercizio
Si consideri la permutazione $ f in S_8 $ = $ (1357)(2468) $
a)stabilire la classe di $f$
e qui l'ho scomposta in $ (13)(15)(17)(24)(16)(28) $ e ottengo 6 trasposizioni quindi la classe è 6
b)calcolare $ f^2 $
qui penso si debba fare ...

Salve ragazzi,
volevo confrontare la risoluzione di questo esercizio con qualcuno, allora:
Si considerino le applicazioni $f:ZZ->ZZ$ e $g:ZZ->ZZ$ t.c. per ogni $n in ZZ f(n)=-3n$ , $g(n)=2^n$
verificare che una di esse è un omorfismo di anelli
allora io ho fatto in questo modo
$f(nm)=-3mn -> f(n) * f(m) = (-3n)*(-3m)$ quindi questo non è un omorfismo di anelli
mentre
$g(nm) = 2^m*2^n=2^(n+m) -> g(m)*g(n) = 2^m*2^n=2^(n+m)$ quindi questo è un omomorfismo di anelli
spero di non aver scritto boiate
che ne pensate? è ...

ciao,
domani l'altro ho un esame di fisica e c'è un tipo di esercizzio che non mi vuol riuscire .
Per esporre i miei dubbi vi posto un esercizio di un compito passato :
Esercizio 2
Due piastre conduttrici quadrate I e II di spessore d = 1 cm superficie S = 1 m2 sono poste a distanza d come mostrato in figura. La piastra superiore ( I ) è caricata con una carica elettrica Q = 2nC mentre quella inferiore ( II ) è scarica.
2.1- Trascurando gli effetti al bordo, si trovino i valori ...

Buonasera a tutti!
Sto cercando di trovare la famiglia dei chiusi dello spazio topologico $(X,theta_C)$, dove con $theta_C$ si denota la topologia cofinita ed $X$ è un insieme infinito. Ho trovato in un testo che tale famiglia è: $C={AsubeX|A text{ è finito}}uu{X}$. Non c'è dubbio sul fatto che in $C$ debba starci $X$ perchè il suo complementare in $X$ è l'insieme vuoto che chiaramente è finito. Il dubbio sorge per $A$: anche se ...

Ciao a tutti, ho qualche impedimento a capire bene la trasformata di Fourier della funzione sinc.
Ho: $sin(2t)/(\pit)$ e il libro dà come trasf. $rect(\pi/2f)$
Questo mi pare un pò strano però, perchè $sin(2t)/(\pit)$ può essere visto come: $2/\pisin(2t)/(2t) => 2/\pisinc(2t)$, quindi questo sinc si annulla in $+-\pi/2$, cioè ha estensione $\pi$. quindi non capisco perchè il libro dimezzi la scala. ma per quanto riguarda l' altezza del rect mi sorgono dei dubbi, perchè secondo la ...

[tex]\int \frac{dx}{1+e^x}[/tex]
Viene risolto tramite sostituzione, e a un certo punto ottengo:ù
[tex]x-\int\frac{de^x}{1+e^x}=x-log(1+e^x)+k[/tex]
Non ho capito il perchè di quel logaritmo, non dovrebbe essere:
[tex]\int\frac{1}{x}=log|x|[/tex]
E quindi se al numeratore dell'integrale ho [tex]de^x[/tex] cosa c'entra dato che quella derivata non fa 1?

Salve a tutti,
sono nuovo del forum e vi chiedo subito un aiuto in merito ad un problema che, seppur immagino sia di facile soluzione,
mi sta dando problemi
L'argomento è relativo alla Meccanica Quantistica e nello specifico alla Normalizzazione degli Autostati dell'Impulso
(anche se ammetto che è più un problema di natura matematica che prettamente fisica)
Non capisco come si risolve nel dettaglio il seguente integrale
$ \int dp^{\prime} e^{\frac{i p^{\prime} (x^{'} - x^{''})}{\hbar}} $
in modo tale che risulti ...

Vorrei un aiuto nel decifrare questa dimostrazione copiata dalla lavagna a lezione.
Siamo in un campo [tex]K[/tex] avente cardinalità [tex]q[/tex] e caratteristica [tex]p[/tex].
Sugli appunti c'è scritto che si vuole dimostrare che il polinomio [tex]x^n-1[/tex], con [tex]n \neq q-1[/tex] non ha radici multiple in [tex]K[/tex] se e solo se il [tex]n[/tex] e [tex]p[/tex] sono coprimi (ovvero [tex](n,p)=1[/tex]).
Innanzitutto, mi chiedo se dire "non ha radici multiple" sia corretto oppure ...

Date:
$T(1,1,1)=(-1,2)$ $T(0,1,1)=(0,4)$ $T(1,1,0)=(2,1)$
Scrivere la matrice di T rispetto la base canonica.
Non riesco a capire come svolgere questo esecizio.
So che il dominio è rapprensentato dalla matrice:
$( ( 1 , 0 , 1 ),( 1 , 1 , 1) ,( 1 , 1 , 0 ) )$ e che le rispettive immagini sono: $( ( -1 , 0 , 2 ),( 2 , 4 , 1) )$
Poi ho fatto un paio di tentativi ma sono andati a vuoto, qualcuno mi sa aiutare?
Non riesco a capire come cambiare la base da $( ( 1 , 0 , 1 ),( 1 , 1 , 1) ,( 1 , 1 , 0 ) )$ a quella canonica.
Grazie perl'aiuto

Ciao a tutti.
Devo scrivere un database relazionale in grado di gestire un archivio di cd musicali in base alle richieste che ci darà il professore.
Allora io ho pensato di creare 3 tabelle: AUTORE, CD , BRANI
AUTORE:
-codiceAutore(chiave primaria)
-Nome
-Cognome
-provenienza
-dataNascita
-codiceCd(chiave esterena)
CD:
-codiceCd(chiave primaria)
-nomeCd
-numeroBrani
-prezzo
-codiceBrano(chiave esterna)
BRANI:
-codiceBrano
-nomeBrano;
-codiceCd(chiave ...

Ciao a tutti, avrei bisogno ancora del vostro aiuto............
Devo trovare la matrice che rappresenta la trasformazione lineare $L:R^2->R^2$ rispetto alla base $e1$ ed $e2$
$L=(a*e1 + b*e2 ) = (2a+b)e1+be2$
con $e1=(1,2) e2=(2,0)$
Non ho capito cosa dovrei fare, non ho neanche un esempio infatti in tutti gli esercizi che ho mi viene già data la matrice ma vorrei anche capire però come va ricavata.......
Grazie

Salve.
1 ) se ho uno sottospazio V={(x,y,z,t) : 2x-t=x+2y-t=0} nello spazio vettoriale $RR^4$
Come faccio a calcolarmi una base?
2 ) e se ho V={(x,y,z,) : 2x-y-z=0} ?
non ci riesco...davvero
sul 1) procedo con gauss e le righe linearmente indipendenti saranno una base?
sul 2) devo porre qualcosa?
grazie grazie grazie

ciao!
volevo chiedere se qualcuno poteva scrivere la dimostrazione della non esistenza del limite lim(x --> +∞) sin x
perchè non mi è possibile sfruttare il fatto che il limite destro sia diverso dal sinistro, dato che questo è un limite destro.
grazie mille
ciao a tutti non riesco a risolvere questo esercizio:$2xyy'=y^2-x^2+1$ allora inizialmente ho diviso tutto per 2xy e trovo un'equazione che a me sembra di bernoulli perchè ottengo $y'=(1/(2x))y-(x^2+1/(2x))y^(-1)$ a questo punto divido per $y^(-1)$ in modo da poter fare la sostituzione prevista per risolvere un'equazione di bernoulli e ottengo $y/(y^(-1))=(1/(2x))y^2-((x^2+1)/(2x))$ ma non riesco a proseguire,qualche consiglio????

Consideriamo la formula di rappresentazione di Green per la soluzione fondamentale del problema di Laplace:
Perchè se u è a supporto compatto (cioè è nulla al di fuori di un compatto), l'integrale esteso sulla frontiera di omega sparisce????
Mi scuso se non riesco a scrivere la formula, ma è da poco che sto su sto forum. Se qualcuno mi può aiutare....grazie.

Salve a tutti, sono nuovo del forum, non ho grande dimestichezza con la statistica, mi scuso in anticipo se l'esposizione dei fatti risultasse non chiara o se la questione in se fosse malposta.
[size=150]Problema[/size]
Ho un fenomeno assimilabile ad una macchina che produce pezzi con un tasso di guasto D incognito.
Al controllo di un intero lotto di X pezzi prodotti si riscontra Y pezzi difettosi, determinando quindi la frequenza F = Y / X.
F è una stima del tasso di guasto D. (Per la ...

salve
devo calcolarmi il limite di n tendente all'infinito di $(e^(2n(x-3)))/(sqrt(n)+1)$
ho provato a raccogliere n al denominatore $n(1/n+1/sqrt(n))$ ma non riesco a trovare un modo per risolvere questa forma di indeterminazione...
$ lim_(x -> 0) [sqrt( 1+(x^2))-1]/sin(x^2)$
Non riesco a risolvere questo limite,dovrebbe tornare 1 ma a me continua a tornarmi 1/2.
Per calcoarlo ho applicato alcuni limiti notevoli tipo:
$[sqrt( 1+(x^2))-1][1/ sin(x^2)](x^2/x^2)$ quindi verrà $[sqrt( 1+(x^2))-1)/(x^2)[x^2/sin(x^2)]$
Questo è un limite notevole per x che tende a 0 $((1+x)^t-1)/x=t $
Nel nostro caso $[( 1+(x^2))^(1/2)-1]/(x^2)=1/2$
E questo tende a 1 $[x^2/sin(x^2)]$......quindi il tutto dovrebbe tornare 1/2 e inceve il risultato è 1.
C'è qualcuno che può gentilmente spiegarmi come fa a ...
Ho l'equazione differenziale y'=(tgx)y+cosx
allora io ho svolto l'esercizio in questo modo:
integro tgx e mi viene =$1/2log|1+(tgx)^2|$=$(log|1+(tgx)^2|)^(1/2)$
Ora vado a usare la formula per l'equazioni differenziali lineari
$e^((log|1+(tgx)^2|)^(1/2))* int_( )^( ) <cosx*e^(-(log|1+(tgx)^2|)^(1/2))> $
però ora non riesco a risolvere l'integrale, ho provato per sostituzione ma poi dopo non riesco a sostituire il cosx...
...c'è qualcuno che mi può dire come si fa a risolverlo, oppure che mi dica dove sbaglio? grazie mille

Salve a tutti, ho il seguente problema:
"Un proiettile viene sparato con un angolo di 45° verso l'alto da una cima di una rupe alta 256m, con una velocità di 185m/s.
Quale sarà la sua velocità quando colpisce il suolo sottostante?"
Il libro suggerisce di utilizzare la legge di conservazione dell'energia.
Io ho pensato di procedere nel seguente modo:
ricavo il tempo che impiega a cadere dalla relazione $V_y=V_(y_0)-g*t$ da cui ricavo $t=13.3s$;
da qui ricavo lo spostamento ...