Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Ho un serio problema con le figure e i grafici in latex, non riesco a farle stare dove voglio io, ho provato in tutti i modi, ma o mi sposta il grafico dopo il teso, o me lo fissa in alto alla pagina, potete aiutarmi?

Come da titolo ho bisogno di un software che mi aiuti a risolvere integrali doppi, derivate parziali e tutti i calcoli che riguardano le funzioni in due o più variabili. Possiedo già derive ma mi permette solo di rappresentare funzioni in più variabili, esiste qualche software di tipo più avanzato ?
ho letto in internet che
$1 + x <= e^x <= 1/(1-x)$ ,
questo perchè deriva dal limite notevole di $e^x$.
Quindi, se io ho un limite del tipo
$lim_((x,y)to(0,0)) root(3)y e^-((y^2)/(x^4))$ ,
posso maggiorare $e^-((y^2)/(x^4))$ con
$1/(1 + (y^2)/(x^4)) $, che è a sua volta $<=1$ ? E quindi verrebbe
$lim_((x,y)to(0,0)) root(3)y * 1 = 0$

ciao a tutti...
leggendo alcuni libri di Fisica generale non riesco a trovare un motivo valido per definire "rigorosa" la definizione che viene data alla densità di corrente elettrica $ bar (J) $;
Allora, viene considerato una superficie infinitesima $ d Sigma $ con una normale $ bar (n) $ in generale orientata non parallelamente alla velocità delle cariche; il ragionamento che viene fatto è il seguente: considerando un periodo di tempo $Delta t$, la carica ...

sto svolgendo degli esercizi e mi sono impantanato su questo quesito che sembrava banale, ma non lo riesco a svolgere.
il testo dice:
un corpo di massa m=100kg è trascinato parallelamente al suolo alla velocità v=8 km\h, la forza esercitata sul corpo è di F=350N.
calcolare la risultante delle forze agenti sul corpo.
io sono andato spedito e ho detto, su x ho la forza F=350N e su y ho la forza peso P=mg=980N ... solo che la soluzione mi dice che la risultante è zero, cosa sbaglio?
grazie!

Salve, non riesco a comprendere quale sia l'utilità di specificare il principio zero della termodinamica. Se ho un corpo C a 20 gradi e due corpi A e B sono in equilibrio termico con questo corpo C, allora mi sembra ovvio che A e B abbiano la stessa temperatura.
Ciao a tutti!
Ho il seguente esercizio:
Sono assegnato il piano A, la retta r e il punto P.
Trovare la retta s, parallela ad A, passante per P e incidente ad r.
Io ho risolto cosi:
Trovo la retta passante per P, impongo la condizione di parallelismo in funzione dei direttori della retta s. Metto a sistema la retta s e la retta r e risolvo in modo che abbia una soluzione.
E' corretto??
Grazie a tutti
Non riesco a cavare fuori il valore del limite che secondo Wolfram Alpha questo rapporto dovrebbe avere, per n che tende ad infinito:
${(log cosh(1/n))^3 / (1+cos [pi (9 + 1/n^3 )^(1/2) ])}$
In particolare ho problemi con il coseno al denominatore. Non riesco a trovare un valore infinitesimo per il suo argomento -in modo da svilupparlo.
Raccogliendo 9 ed estraendolo dalla radice ho al denominatore:
$1+cos [3pi (1 + 1/n^3 )^(1/2)]$
che mi andrebbe molto bene se solo non avessi di mezzo il $3pi$.
Qualche consiglio? Grazie mille. ...
Esercizio:
$\lim_{x \to -1^+}(e^(2*(x+1))-2-x)/sqrt(x+1)$
ho provato a risolverlo cosi:
$=\lim_{x \to -1^+}(e^(2*(x+1))-1+1-2-x)/sqrt(x+1)=$
$=\lim_{x \to -1^+}(e^(2*(x+1))-1-(x+1))/sqrt(x+1)=$
$=\lim_{x \to -1^+}((2*(x+1))-(x+1))/sqrt(x+1)=0$
L'infinitesimo al numeratore è di ordine superiore dell'infinitesimo al denominatore.

Ciao a tutti ragazzi
lunedì ho il primo compitino di geometria 1 che verterà su :
-vettori
-spazi e sottospazi
-matrici
-applicazioni lineari
-determinanti[/list:u:kmxs7v2i]
(i primi 6 capitoli del Lang per intenderci)
è più di una settimana che studio sul Lang e ormai dovrei saper fare tutti gli esercizi che mi propone ma cercando online ho trovato degli eserciziari con soluzioni tra cui questo:http://cdm.unimo.it/home/matematica/cristofori.paola/Es_geo1(soluz).pdf
l'esercizio che volevo fare è il n°16 ed il testo dice:
Sia ...

Buongiono a tutti, una rivista spezializzata in teoria dei numeri ha publicato il mio articolo su una generalizazzione della congettura di Fermat-Catalan... In questo articolo ho dimostrato la cosi detta congettura e la ho generalizzata... Ma in questo articolo ho anche provato il teorema di Matyasevich con calcoli puramenti algebrici... La mia prova e la seguente : une teoria matematica deve essere coerente. Per essere coerente, i suoi proposizioni no si devono contraddire... Per questo, Gödel ...
ciao,
sto cercando di calcolare le norme di alcune forme lineari. Ad esempio la prima:
\[ f \mapsto \int^1_{-1} f(t) dt \]
dove $ f in E$, spazio delle applicazioni continue da $[-1,1]$ in $RR$ munito della norma $ ||(f)||_{oo} = Sup_{t in [-1,1]} |f(t)|$.
Cerco di maggiorare \( \int^1_{-1} f(t) dt \) così:
\[ \int^1_{-1} f(t) dt = \int^1_{0} f(t) dt + \int^0_{-1} f(t) dt \leq \int^1_{0} |f(t)| dt + \int^0_{-1} |f(t)|dt \]
Riconosco che \( \int^1_{0} |f(t)| dt \) ...

Si ponga $ xgeq 2 $ ,
f(x)= $ 1 / (x(logx)^2) $
a)Si provi che f è integrabile in senso generalizzato in $ [2,+ infty [ $
Facendo i calcoli mi viene $ 1 / log2 $ giusto?
b) Si dimostri che la serie $ sum_(n = 2)^(+infty) f(n) $ è convergente.
Come devo fare a risolvere il punto b)?grazie in anticipo!

Ciao ragazzi! Ho delle difficoltà a risolvere questo esercizio: devo studiare la convergenza della serie
$ sum_(n = 2)^(oo )((-1)^(n))log (1+x^n)/n^x $
Ecco cosa ho fatto:
La serie di funzioni è a segni alterni, allora ho usato il criterio di Leibniz
1) controllo che $lim_(n->oo)|f_n(x)|=0$
$ lim_(n -> oo) |((-1)^(n))log (1+x^n)/n^x| = lim_(n -> oo) log (1+x^n)/n^x = lim_(n -> oo) log( x^n(1+1/x^n))/n^x = lim_(n -> oo) n*log x/n^x = lim_(n -> oo) log x * n^(1-x) $
Ottengo che
$ lim_(n -> oo) log x * n^(1-x) = { ( 0, per, 1-x<0,x>1 ),( 0, per, 1-x=0,x=1),( oo, per, 1-x>0,0<x<1 ):} $
cioè la serie è infinitesima per $x>=1$.
2) controllo che sia una serie di funzioni decrescente
$|f_(n+1) (x)|<|f_(n) (x)|$ .. cioè..
$ log (1+x^(n+1))/(n+1)^x<log (1+x^n)/n^x, (n/(n+1))^x log(1+x^(n+1))<log(1+x^n) $
poiché $ n/(n+1) -> 1$ per ...

Ragazzi come faccio a risolvere questo integrale ??
$\int_E (x^2+y^2+z^2)^2 dxdydz$ dove $E= (xyz) : x^2+y^2+z^2$ $<=$ 1

Ciao a tutti sto studiando gli ArraY ma ho un dubbio che è il seguente lo si vede evidenziato nel codice con queste barre // allora
public static void main (String[] argv ){
Scanner tastiera = new Scanner (System.in);
System.out.println("Quante temperature si devono inserire ? " )
int dimensione = tastiera.nextInt() ; // ho letto che questa dimensione potrebbe cambiare ed essere diversa da temperatura.length, questo nn riesco a capire , xkè ...

Salve, leggendo qua e là in giro ho notato spesso che limiti, derivate ed integrali vengono spesso denominati come degli "operatori".
Qualcuno mi sa dire di più?
Grazie
Salve a tutti oggi mi son trovato ad affrontare un esercizio sul seno e coseno iperbolico.
So che il sinh(x) = (e^x - e^-x) / 2
e che il cosh(x) = (e^x + e^-x) / 2
l'esercizio richiedeva di dimostrare che
cosh^2(x) - sinh^2(x) = 1 Vx€R
ho provato riscrivendo l'equazione come segue
((e^x + e^-x) / 2)^2 - ((e^x - e^-x) / 2)^2 = 1 e provando a risolverla ma niente da fare mi risulta 2 = 1.
Ho provato in derive e usando sinh e cosh è ok ma se provo la mia trascrizione non va, quindi ...

Carissimi ragazzi, studiando fluidodinamica mi sono imbattuto in tale dicitura "...per un fluido incompressibile in regime stazionario vale $ S_av_a=S_bv_b $, nota come Legge di Leonardo...". Quella che il mio testo chiama legge di Leonardo, corrisponde all'Equazione i continuità? Ringrazio anticipatamente per la collaborazione.

Carissimi ragazzi, nel corso di una dimostrazione a riguardo delle forme differenziali mi sono imbattuto in tali righe di testo "...fissata la curva $ gamma $ , indichiamo con $ D $ il dominio limitato di cui essa è frontiera; l'esistenza di tale dominio può essere provata dal teorema di Jordan....". Sostanzialmente non sono riuscito a cavare tante informazioni circa questo Teorema di Jordan e sulla dimostrazione dello stesso. In attesa di vostre illuminazioni, ringrazio ...