Scuola

Discussioni su temi che riguardano Scuola della categoria Matematicamente

Didattica della matematica, storia e fondamenti

Temi di didattica, scambi di idee tra insegnanti e aspiranti insegnanti, storia e fondamenti della matematica.

Fisica

La scienza di pallette che cadono e sciatori che muoiono

Matematica - Medie

Sezione dedicata agli studenti delle medie che hanno incubi matematici

Matematica - Superiori

La scienza dei numeri, dei cerchietti e delle imprecazioni

Scervelliamoci un po'

Spazio dedicato a problemi assegnati a gare matematiche o olimpiadi della matematica, o ancora a prove di ammissione a scuole di eccellenza.


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
indovina
Una piramide ha per base un rettangolo di dimensioni 50cm e 125 cm. Due facce laterali sono triangoli isosceli aventi le basi sui lati minori del rettangolo di base e le altezze 75 cm e 100 cm. Calcolare la misura dell'altezza in cm. Mi date qualche imput? Come cominciare?
6
16 apr 2008, 18:19

Ryszard
Buonasera a tutti. Sono un liceale. Ho diversi problemi con la fisica e dopo l’ennesimo cinque, ho deciso di chiedere aiuto a voi. Io studio parecchio, ma il problema è che non riesco proprio a capire. Ad esempio ora abbiamo appena iniziato il vettore posizione e quello spostamento: i moti del piano. Ebbene, non capisco. Come devo fare? Io seguo anche in classe, non è vero che non voglio studiare. Vado bene nelle altre materie ma fisica proprio non mi va. Aiuto, sono davvero disperato.
3
16 apr 2008, 19:57

oltreoceano90
come si risolvono?? 1. cosx-senx=radice 2sen2x 2. log2senx+log2 (1-cos2x)=2/3 (logaritmo in base 2 di senx+logaritmo in base 2 di 1-cos2x uguale a 2 terzi)
5
15 apr 2008, 15:05

-selena-
trovare tutti i binomi per i quali sono divisibili i seguenti binomi: a(4)-y(4) x(4)-1 8-x(3) 27x(3)+ y(3) 49a(4)- b(4) chi mi spiega questo esercizio per favore??? io nn l'ho capito...come si fa??
6
16 apr 2008, 14:21

feder91
ragazzi...mi servirebbe un piccolo favore... nonostante tanti tentativi e tanta ricerca su internet nn sn riuscito..confido in voi.. mi servirebbe sapere i calcoli,passaggio x passaggio,su come trovare l'equazione generale dell'iperbole... grazie in anticipo..
1
16 apr 2008, 18:11

peppe94
Per piacere mi potreste dare degli esempi non le regole ESEMPI di tutti i tipi di scomposizioni dei polinomi please !!!!!!!!!!!!!!!!!
3
16 apr 2008, 14:12

oltreoceano90
quale risposta è giusta??e perchè?? se un quadrato e un cerchio sono equivalenti, allora: A. la diagonale del quadrato è minore del diametro del cerchio B. lato del quadrato e raggio del cerchio sono grandezze commensurabili C. il perimetro del quadrato è maggiore della lunghezza della circonferenza D. il perimetro del quadrato è minore della lunghezza della circonferenza E. nessuna delle predenti affermazioni è vera
4
15 apr 2008, 15:58

luca792
Ciao a tutti sono nuovo di questo forum, vorrei chiedervi un consiglio sul mio problema Ho una circoferenza di raggio incognito Rs,le due varibiali note sono: l' arco di circonferenza Ls e l'angolo beta che questo forma con l'asse orizzontale. Esiste una soluzione? Grazie. [/img]
6
15 apr 2008, 19:04

chiararachi
ciao a tutti,avrei bisogno della risoluzione di questi due problemi: fra tutti i triangoli aventu costante un angolo a e l'area S qual e quello in cui è minima la somma dei quadrati dei lati che comprendono a? soluzione: isoscele di tutti i rettangoli inscritti in un medesimo cerchio di raggio di misura r qual e quello di perimetro massimo?e di area massima? quadrato grazie mille per l'aiuto!
5
14 apr 2008, 13:54

jellybean22
Salve a tutti ho dei problemi nella risoluzione di questa espressione alebrica: $(3x-3)/(4x^2-8x+3)+(6x-6)/(8x^3-28x^2+30x-9)-(x-2)/(4x^2-12x+9)$ Mi blocco nel momento in cui devo trovare il m.c.m.: $[3(x-1)]/[(2x-3)(2x-1)]+[6(x-1)]/[(2x-3)^2(2x-1)]-(x-2)/[(2x-3)^2]=$ $=()/[(2x-3)^2(2x-1)]$ Il libro dice che il m.c.m. è $(2x-3)^2$ ma il m.c.m. essendo composto da fattori comuni e non comuni con l'esponente più grande non dovrebbe essere $(2x-3)^2(2x-1)$ ???? Se sbaglio correggetemi (forse ho sbagliato a scomporre ma ho controllato e sembra tutto ok ). Grazie a tutti, ...
7
15 apr 2008, 18:08

Lory902
ragazzi come faccio a risolvere questo esercizio?? vi lascio il testo: Una massa puntiforme di 0,5 kg è appesa ad un filo verticale di massa trascurabile. una forza F orizzontale di modulo pari a 2N è applicata alla massa e la tiene in equilibrio in una posizione in cui il filo forma un angolo alfa con la verticale. trova l'ampiezza di alfa. come devo fare??disperato bisogno di aiuto...
5
15 apr 2008, 18:12

oltreoceano90
siano S e s le aree del cerchio circoscritto e del cerchio inscritto, rispettivamente, in un triangolo equilatero di lato L. allora: A. S è il doppio di s B. S è il quadruplo di s C. il triplo di S è uguale al quadruplo di s D. il rapporto S/s dipende da L E. le superfici dei due cerchi sono grandezza fra loro incommensurabili qual'è la risposta giusta??e perchè??
5
15 apr 2008, 15:15

studentean
appurato il fatto che sen^2(x) / x^2 = 1 (per x che tende a zero) vorrei sapere dove trovare tutte queste regole di come usare seni coseni per semplificare funzioni ecc ecc???GRAZIE
2
15 apr 2008, 17:25

oltreoceano90
non so come fare questi logaritmi....qualcuno può darmi una mano?? log2x x=1/2 (logaritmo in base 2x di x è uguale a un mezzo) log √x 1/x=-2 (logaritmo in base radice di x di uno fratto x, è uguale a -2) logx x^2 (logx^2 x)=1 (logaritmo in base x di x al quadrato, per logaritmo in base x al quadrato per x, è uguale a 1) logx x/2=1/2 (logaritmo in base x di x mezzi è uguale a un mezzo)
12
15 apr 2008, 13:48

oltreoceano90
se un quadrato e un cerchio sono equivalenti, allora: A. la diagonale del quadrato è minore del diametro del cerchio B. lato del quadrato e raggio del cerchio sono grandezze commensurabili C. il perimetro del quadrato è maggiore della lunghezza della circonferenza D. il perimetro del quadrato è minore della lunghezza della circonferenza E. nessuna delle predenti affermazioni è vera
1
15 apr 2008, 14:57

oltreoceano90
siano S e s le aree del cerchio circoscritto e del cerchio inscritto, rispettivamente, in un triangolo equilatero di lato L. allora: A. S è il doppio di s B. S è il quadruplo di s C. il triplo di S è uguale al quadruplo di s D. il rapporto S/s dipende da L E. le superfici dei due cerchi sono grandezza fra loro incommensurabili qual'è la risposta giusta??e perchè??
1
15 apr 2008, 14:17

MaTeMaTiCa FaN
Ragà vedete se potete aiutarmi please... :D sinceramente nn capisco la traccia! nelle seguenti equazioni indicare, senza risolverle, la somma e il prodotto delle radici dp aver verificato ke tali equazioni hanno soluzioni in R. allora indicare la somma e il prodotto lo sò fare xke ci sn due formule precise, ma cm faccio a verificare ke le soluzioni siano in R senza risolvere le equazioni cn la solita formula? cmq un esercizio è x^2+10x-8=0 Grazie in anticipo!
8
14 apr 2008, 19:16

oltreoceano90
non so come fare questi logaritmi....qualcuno può darmi una mano?? log2x x=1/2 (logaritmo in base 2x di x è uguale a un mezzo) log √x 1/x=-2 (logaritmo in base radice di x di uno fratto x, è uguale a -2) logx x^2 (logx^2 x)=1 (logaritmo in base x di x al quadrato, per logaritmo in base x al quadrato per x, è uguale a 1) logx x/2=1/2 (logaritmo in base x di x mezzi è uguale a un mezzo)
1
15 apr 2008, 12:52

sara19931
2 x(alla seconda) +4ax+3x +6a=0 provo a risolverla con la formula risolutiva 2x(alla seconda) + (4a+3)x +6a=0 il problema è alla fine quando faccio la formula risolutiva sotto la radice mi trovo:16a(alla seconda) di cui la radice è 4a 9 di cui la radice è 3 ma 24a di cui non c'è la radice è vero che non le ho capite bene ma quelle normali le so fare....mi potete fare questa e spiegarmi come si fa quando ci sono altri fattori oltre il primo al quadrato ,uno con la x e il numero da ...
2
15 apr 2008, 11:26

honey1
Ciao a tutti. Allora il mio problema è questo: devo dimostrare per assurdo che $√3$ sia un numero irrazionale. La dimostrazione a scuola l'abbiamo già fatta con $√2$ in questo modo: supponiamo, sempre per assurdo, che $√2=p/q$ otteniamo $2q^2=p^2$ da quì deduciamo che $p$ è un numero pari allora lo scomponiamo in $2k$ l'equazione allora diventa $q^2=2k^2$ allora anche $q$ è pari così, vedendo che ...
5
12 apr 2008, 19:40