Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
mona312
Ho svolto questa equazione: y’=x+xy^2 e mi è uscita corretta [ tan(x^2/2 +c) ]; il problema è che ho anche messo come soluzione, la sua soluzione stazionaria, ovvero zero, se non sbaglio, ma tra le soluzioni non risulta. È la seconda volta che mi capita (l’altra funzione era: y’=yx^2) e vorrei capire il perché. Come so che devo scartare la soluzione stazionaria? Grazie in anticipo!
8
6 gen 2024, 15:39

lutfilashi
Marta scende da un vertiginoso scivolo acquatico come rappresentato in figura. Quando arriva al termine della pendenza ha una velocità di 10 m/s e lungo il tratto orizzontale attrito e resistenza dell'acqua frenano il suo moto in un tempo pari a 2,5 a resistente e acceleras i net-tori di velocità, forza resistente e accelerazione. Se Marta ha una massa di 50 kg qual è il modulo della forza resistente che le permette di fermarsi?
1
4 gen 2024, 19:15

lutfilashi
Marta scende da un vertiginoso scivolo acquatico come rappresentato in figura. Quando arriva al termine della pendenza ha una velocità di 10 m/s e lungo il tratto orizzontale attrito e resistenza dell'acqua frenano il suo moto in un tempo pari a 2,5 a resistente e acceleras i net-tori di velocità, forza resistente e accelerazione. Se Marta ha una massa di 50 kg qual è il modulo della forza resistente che le permette di fermarsi?
1
4 gen 2024, 19:15

ncant04
Si consideri $ t \geq 0 $ e la seguente funzione \[ f(t) = \int_{0}^{t} \max \left(0, \sin (x) \right) \] Mi vengono posti i quesiti seguenti: - Verificare che la funzione sia effettivamente definita su tutto $ \mathbb{R}^+ $; - Calcolare i seguenti limiti: $ \lim_{t \to +\infty} f(t) $, $ \lim_{t \to 0} f(t) $. [/list:u:3bst3z56] Per il primo quesito, riscrivo $ f(t) $ come \[ f(t) = \int_{0}^{t} g(x) \,dx \] dove $ g(x) = \max \left(0, \sin (x) \right) $, che posso anche scrivere come una funzione definita a ...
1
7 gen 2024, 15:24

otta96
Per calcolare la lunghezza massima di una partita di scacchi bisogna sapere quante spinte pedonali si possono fare al massimo, ma non è facile calcolarlo precisamente, perchè nonostante sia facile maggiorare con facilità questo numero in 6 spinte per pedone per ogni pedone, quindi 96, in pratica questo non può succedere perchè si ostacolano a vicenda e qualcuno deve essere mangiato ma allora non fa tutte e 6 le spinte che teoricamente potrebbe fare. Si sa quanto è questo numero? E cambia ...
5
4 gen 2024, 17:10

Anna.scandiuzzi
Es 11 pag 425 Miglior risposta
ciao! mi servirebbe la traduzione delle frasi dell'esercizio 11 a pagina 425 del libro di greco Dromos volume 1. Sono compiti delle vacanze quindi se riuscite a rispondere il prima possibile sarebbe ottimo. Grazie mille!!
1
11 gen 2024, 21:59

HowardRoark
Devo dimostrare che i centri delle varie circonferenze ottenibili considerando il fascio $x^2+y^2+ax+by+c+k(x^2+y^2 + a'x+b'y+c')=0$ giacciono tutti su una stessa retta e che l'asse radicale è perpendicolare a tale retta. Io ho proceduto così, ma non sono troppo convinto riguardo la prima parte della dimostrazione (che i centri delle circonferenze di un fascio sono allineati). Riscrivo l'equazione di un fascio così: $x^2+y^2+(a+ka')/(k+1)x + (b+kb')/(k+1)y+(c+kc')/(k+1)=0$. Le coordinate del centro di una generica circonferenza individuata dal fascio sono ...
4
7 gen 2024, 20:21

Fede_16
Ciao! Oggi propongo un esercizietto, in realtà nemmeno troppo articolato, sull'equazione del Bernoulli. Dato un sistema formato da 2 serbatoi cilindrici ($A$ e $B$) della stessa forma collegati da una tubazione di diametro $\phi$. Il livello in $A$, denominato $h_A$, è maggiore di $h_B$. I livelli son tenuti costanti dalla portata $G$ che, in condizioni stazionarie, entra in $A$ ed esce in ...

Cannelloni1
Buongiorno e buon anno a tutti i lettori e scrittori del forum. Vi sottopongo un controesempio alla seguente proposizione: Sia $I$ un ideale principale, allora $\sqrt{I}$ è principale Per il nostro controesempio prendiamo $A=\mathbb{K}[x,y,z,t,w]$ $/(x^2-zt,y^2-zw)$ e definiamo $I=(z)$ che è principale per definizione. Non è difficile vedere che $\sqrt{(z)}=(x,y,z)$, ma questo non è sufficiente a dire che $\sqrt{(z)}$ non sia principale, anche se non sembra così ...

m.e._liberti
Salve, vi propongo questo esercizio di fisica. Un carrello di massa m si muove su un binario costituito da un tratto rettilineo AB, di lunghezza 2R = 10 m, un ottavo di circonferenza BC di raggio R = 5 m e un ottavo di circonferenza concava CD, raccordata alla precedente, di raggio R. Il tratto AB è scabro con coefficiente di attrito $\mu_d$ = 0.2, il tratto BD liscio. a) Si calcoli il valore della velocità inziale $\v_0$ con cui il carrello passa per A, affinché raggiunga ...

gandolfo_m
Ciao a tutti, avrei un contarello che non mi torna proprio, in particolare il prof dice che il prodotto di due campi (che a breve vi mostrerò) dovrebbe essere nullo. Ma a me non torna. Dopo vari conti sono arrivato ad avere per la componente x dei campo $E_(0x)=-iCalpha(mpi)/acos(mpi/ax)sin(npi/by)$ e $B_(0x)=iCepsilon_rmu_rk/c(npi)/bsin(mpi/ax)cos(npi/by)$ Si deve svolgere $vecE*vecB=0$ ma a me non sembra annullarsi quella componente Non capisco se sbaglio solo il conto ma ho provato un po' di identità trigonometriche
7
26 nov 2023, 09:55

LoyalFanny
Mi piacciono le materie scientifiche e vorrei prendere lo scientifico indirizzo cambridge ma ho paura di non essere all'altezza... Consigli?

pincopallino042
Salve a tutti. Sto cercando di calcolare $ \lim_{n \to \infty} \frac{e^{\frac{1}{n^2}}-1}{\sin \left(\frac{1}{n}\right) - \frac{1}{x}} $. Ho notato che si tratta di una forma indeterminata $ \frac{0}{0} $. Potrei applicare de l'Hopital, ma sospetto che verrà un calcolo mostruoso. Noto però che, per i limiti notevoli, \[ e^{\frac{1}{n^2}} \sim \frac{1}{n^2} \] [nota]$\frac{1}{n^2} \to 0 $ per $ n \to +\infty $[/nota]. e che \[ \sin \left( \frac{1}{n}\right) \sim \frac{1}{n} \] [nota]$\frac{1}{n} \to 0 $ per $ n \to +\infty $[/nota]. Sostituendo tutto all'interno del limite che ...

pincopallino042
Salve a tutti. Come da titolo, sto studiando $ f(x) = | x | + \sin \left( | x | \right) $ e avrei bisogno di un controllo. Si tratta di una funzione continua in tutto $ \mathbb{R} $, in quanto somma di una funzione continua in $ \mathbb{R} $ ( $ | x | $ ) e di una composizione di funzioni continue ( $ \sin \left( | x | \right) $). Noto la presenza di valori assoluti e di una funzione trigonometrica, quindi mi chiedo immediatamente se la funzione è pari e/o periodica. \[ f (-x) = | - x | + \sin \left( | -x | \right) = ...

keptury
Buonasera a tutti, la domanda che pongo è alquanto semplice: quando viene proposta la costruzione formale degli insiemi numerici in un corso di laurea in matematica? Chiedo perché, da quanto ho capito, non viene trattato a livello universitario ma mi sembra alquanto assurdo perché dove si dovrebbe apprendere un concetto tanto fondamentale se non all'università? E per di più durante una laurea in matematica?
5
5 gen 2024, 23:22

duke-fleed
Buongiorno a tutti! Sono un appassionato di matematica e fisica. Sono qui per ripassare alcuni vecchi concetti appresi durante gli studi universitari in gioventù e per imparare cose nuove.
1
7 gen 2024, 12:49

Animary
Immagina di essere un gingillo del albero di Natale.Come vedi il mondo?da dove vieni?
2
3 gen 2024, 17:24

ale715
Se qualcuno ha le conoscenze per poterla fare, e magari potrebbe anche spiegarmi come fare, ve ne sarei grata
2
4 gen 2024, 17:43

HowardRoark
Un trapezio isoscele circoscritto a una circonferenza di raggio $asqrt(6)$ ha perimetro uguale a $20a$. Determina l'area del trapezio. $AB + CD + 2CB = 20a => AB + CD = 2(10a - CB)$, dove $AB$ è la base maggiore, $CD$ base minore e $ 2CB$ sono i due lati obliqui (che sono congruenti). In un tale trapezio so che il diametro della circonferenza inscritta è medio proporzionale tra le due basi: $AB:2asqrt(6)=2asqrt(6):CD$. Ho provato a ricavarmi $CB$ considerando ...
24
5 gen 2024, 00:12

ncant04
Ho fatto lo studio di $ f(x) = \frac{|x-1|}{x^4}+ \frac{1}{10x^4} $ fino alla derivata prima e avrei bisogno di un controllo, se siete disposti. Questa funzione può essere scritta come una funzione definita a tratti: \[ f (x) = \begin{cases} \frac{-(x-1)}{x^4} + \frac{1}{10x^4} & \text{se} \; x-1 < 0 \\ \frac{+(x-1)}{x^4} + \frac{1}{10x^4} & \text{se} \; x-1 \ge 0 \\ \end{cases} \] ossia, semplificando: \[ f(x) = \begin{cases} \frac{11-10x}{10x^4} & \text{se} \; x < 1 \\ \frac{10x-9}{10x^4} & \text{se} \; x \ge 1 ...
3
7 gen 2024, 01:06