Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Una spira piana di superficie $ S = 2 cm^2 $ è percorsa da una corrente $ I =1 A $ è immersa in un campo magnetico uniforme $ vecB = B_0x^ $. Sapendo che il vettore che identifica la superficie della spira è orientato in modo
tale che, tenendo conto del verso della corrente, forma con il versore x^ un angolo di 30 gradi, determinare il momento torcente che agisce sulla spira e l’energia potenziale magnetica della spira assumendo come zero
dell’energia potenziale alla posizione di ...
Scusate qualcuno potrebbe aiutarmi con questo esercizio.
data l'applicazione:
fh : ax3 + bx2 + cx + d ∈ R[x]3 → (2a − b + d)x^3 + h(b + c)x^2 + cx + a − b + 2c + 2d ∈ R[x]3
i) Calcolare la dimensione ed una base di Imf0 e kerf0.
Ricordando che l’intensità del campo magnetico prodotto al centro di una spira circolare percorsa da una corrente stazionaria I è pari a $ B(O) = (μ_0 I) /(2R) $ con R raggio della spira, determinare l’intensità del campo magnetico nel centro O dalla spira conduttrice sagomata come in figura sapendo che $a = 5 cm$, $b = 8 cm$ e $alpha = pi/2 $ quando è attraversata da una corrente $ I = 1 A $.
Come ho risolto io :
Posso risolvere il problema applicando la legge di Biot-Savart:
...
Buonasera, chiedo aiuto per il seguente esercizio di fisica:
Una pallina di massa $m = 100 g$ e di dimensioni trascurabili viene lanciata con velocità orizzontale $v_0$ incognita lungo un piano orizzontale. Dopo un certo tratto incontra una discesa a forma di arco di circonferenza, avente raggio $R = 70 cm$. Sapendo che la pallina si stacca quando raggiunge l’angolo $alpha = 30°$ mostrato in figura, calcolare $v_0$ trascurando ogni attrito e l’andamento ...
potreste darmi una mano a svolgere questo esercizio?
In un tubo di gomma da giardino, lungo 10 m e di 4 cm di diametro, fluisce 1 l/s d’acqua (fluido reale). Calcolare la portata volumetrica quando al tubo di 10 m venga aggiunto un altro tubo di 10 m di 2 cm di diametro.
Sia data un'onda elettromagnetica che viaggia lungo l'asse x con velocità $ vecv=0.5cx^ $, sapendo che l'espressione del campo elettrico è pari a $ vecE=E_(0)sin(kx-omega*t)y^ $ con $ E_0=0.1mV $ determinare l'espressione del campo magnetico.
Innanzitutto il campo magnetico sarà diretto lungo l'asse z, poiché deve sarà ortogonale tanto ad $vecE$ quanto alla direzione dell'onda che viaggia lungo $x$. Per quanto riguarda il modulo di B, sfrutto innanzitutto la relazione ...
Ho un dubbio su questo problema di Fisica II:
Il prof aveva accennato che in ogni punto il campo è dato da: CampoPiano - CampoDisco
1) Il disco effettivamente non viene inserito (perché la traccia dice che è stato fatto un foro), quindi perché devo sottrarre il campo del disco? Non è 'superficiale' dato che il foro è piccolo rispetto alle dimensioni del piano indefinito?
2) Seguendo il consiglio del prof, è corretto?:
$ \barE(P) = \sigma/(2ε_0) d/(\sqrt(d^2+R^2)) = 2.77 \cdot 10^9 N/C \hat{j} $
E quindi:
$ \barE(C) = 0 $
Sia $\varphi: (0,+infty)xx(0,2pi)->RR^3$ con $\varphi(r, \theta)=(rcos(\theta),rsin(\theta),\theta)$ e $S$ l'immagine di $\varphi$.
(a) Mostrare che $S$ è una superficie e $\varphi$ è una sua parametrizzazione.
(b) Calcolare la prima e la seconda forma fondamentale associata alla parametrizzazione data.
(c) Calcolare la curvatura gaussiana di $S$ in ogni suo punto.
Io ho fatto così:
(a) Mostriamo che $\varphi$ è una parametrizzazione: $\varphi$ è un omeomorfismo con la sua ...
Buonasera probabilmente quella che vi sto per fare è una domanda stupida, ma non riesco a capire perché se le colonne della matrice associata ad un applicazione lineare sono indipendenti allora le immagini calcolate sui vettori della base di partenza sono indipendenti tra di loro. Nella matrice associata io metto le coordinate dell’immagine sulla base di partenza rispetto alla base di arrivo. Questo ragionamento a me torna solo nel caso in cui la base di arrivo sia la base canonica, ma ho visto ...
Sia dato il seguente circuito, formato da tre resistenze, una d.d.p. variabile $E1$ ed una d.d.p. fissa $E2$. Dati i seguenti valori dei parametri $R1= 5 Ω$, $R2= 10 Ω$, $R3= 20 Ω$, $E2 = 2 V$ , trovare il valore di $E1$ per cui la corrente $I2$ che scorre nella resistenza $R2$ è nulla.
Non saprei come impostare il problema, mi dareste una mano per favore?
Buonasera a tutti.
ho riscontrato problemi a risolvere un esercizio di un vecchio compito di cui vi metto il testo qui sotto:
ho provato ipotizzare che la molla in questione mi desse la possibilità di "trasformare" quella cerniera in un incastro però non so se è corretto e per di più poi non so come concludere l'esercizio in quel caso.
vi metto qui sotto i miei svolgimenti.
Grazie in anticipo
Il sifone permette di svuotare un contenitore dell’acqua (fluido ideale) in eccesso fino all’altezza hA. Il tubo ABC, di sezione costante e 100 volte minore della superficie del contenitore, deve essere inizialmente riempito, e da quell’istante il liquido uscirà dal tubo in C. Rispetto alla quota iniziale dell’acqua, i livelli sono hA = -20 cm, hB = 50 cm, hC = -60 cm. Calcolare (nell’istante iniziale) velocità di uscita dell’acqua in C.
l'equazione di bernoulli corretta ...
In caso di mancata alienazione della partecipazione entro un anno, il titolare della partecipazione non può esercitare i diritti sociali nei confronti della società e, salvo in ogni caso il potere di alienare la partecipazione, la medesima è liquidata in denaro dagli amministratori della società.
Nel periodo che precede, il potere, salvato in ogni caso, di alienare la partecipazione è del titolare della partecipazione o degli amministratori della società?
Graie per l'impegno ...
L'esponente $\beta$ è un parametro reale.
Avevo pensato di agire come segue: siccome $e^(1/n)$ una successione che assume il suo massimo pari ad $e$ per $n = 1$, mentre $e^(1/(n+1))$ assume il suo minimo pari a $1$ all'infinito, potrei maggiorare la differenza degli esponenziali come segue
$n^\beta(e^(1/n) - e^(1/(n+1))) < n^(\beta)(e - 1)$
Considero allora la serie
$\sum_{n = 1}^{\infty} n^\beta(e - 1) = (e - 1)\sum_{n = 1}^{\infty} n^\beta$
che converge per $\beta < -1$. E' corretto?
Mi aiutate con questi problemi?
1)La copertura di questo gazebo ha la forma di una piramide quadrangolare regolare avente l'apotema di 3,9m. Per lavare la sua superficie sono stati spesi &amp;euro;842,40 in ragione di &amp;euro;15 al metro quadrato. Quanto misura uno spigolo di base?
2)il contadino giacomo ha costruito una serra per proteggere le piante del suo orto. La serra ha la forma di una piramide quadrangolare. Lo spigolo di base misura 30m e lo spigolo laterale 17m. ...
Buongiorno, gentilmente qualcuno potrebbe aiutarmi con l'esercizio seguente? Vi ringrazio.
Ho provato a calcolare il tempo ricavandomi prima il calore usando la legge della calorimetria (ho convertito 0,5 L del Volume in 0,5 Kg di massa):
$ Q = mc\DeltaT $
e poi dividendo il risultato per la potenza (1 kW) ma la soluzione non combacia
Un condensatore cilindrico di capacità C = 10 nF è tenuto ad una differenza di potenziale di 50 Volt da una forza elettromotrice esterna. Quanto vale la carica presente sulle armature? Di quanto varia tale
carica se nel condensatore è inserito un dielettrico di costante dielettrica relativa k=3.5?
Risoluzione:
$ Q=CV = 10nF * 50 V = 500 nC $
Nel caso in cui si inserisca un dielettrico di costante dielettrica relativa $ epsilon_k = 3.5 $ si ha dunque:
$ epsilon_m = epsilon_0 epsilon_r $ dove $ epsilon_m $ è la costante ...
Vogliamo ricordarlo per il teorema Calogero, per l'invenzione della lampadina, e per alcuni buffi atteggiamenti verso i poteri dello stato.
Una macchina è composta da due moli di gas perfetto biatomico che occupano un volume iniziale di 40 litri ad una temperatura di 400 K. La macchina compie un'espansione isoterma irreversibile fino ad un volume di 100 litri; un raffreddamento isocoro irreversibile e infine una compressione adiabatica reversibile (che chiude il ciclo).
Calcolarne il rendimento, la variazione di entropia dell’universo in funzione dei possibili valori di calore scambiato durante l’espansione e darne una ...