Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Salve a tutti. Ho scritto per rivangare un thread che avevo postato alcuni mesi fa sugli assiomi di hilbert ed il principio di induzione: https://www.matematicamente.it/forum/viewtopic.php?f=37&t=198749.
Il punto era (brevemente) se posso fare geometria con gli assiomi di hilbert senza il principio di induzione. In particolare quest'ultimo sembra necessario quando devo introdurre i multipli di un segmento ed in altre disparate occasioni come ad esempio la dimostrazione dell'incommensurabilità delle diagonale del quadrato. Con gli assiomi di ...
Non capisco perchè se, date $X_|_Y~ Exp(\lambda)$, la distribuzione di $W=X^2$ calcolata con la ripartizione è $\mathbb(P)(X<=+-\sqrt(w))=2\mathbb(P)[0<=X<=\sqrt(w)]=2\int_0^(\sqrt(w))\lambda e^(-\lambdax)dx=2-2e^(-\lambda \sqrt(w))rArr f_W(w)=\lambda/\sqrt(w)e^(-\lambda \sqrt(w))$mentre calcolata con la legge di trasformazione è $f_W(w)=f_X(X(w))|(\partial(X(w)))/(\partial w)|=\lambdae^(-\lambda \sqrt(w))|1/(2\sqrt(w))|=\lambda/(2\sqrt(w))e^(-\lambda \sqrt(w))$
Naturalmente devono coincidere i risultati ma non vedo l'errore.
Buongiorno,
purtroppo non riesco a ricavare le corrette soluzioni di questa disequazione:
$(5-2x)/(-x-1)>0$
qualcun può aiutarmi?
I radicali (265726)
Miglior risposta
Ciao, per favore aiutatemi con questo esercizio, non so dove mettere le mani! Quanto vale rad(1+2000)rad(1+2001)rad(1+2002)rad(1+2003*2005). La risposta è 2001. Vorrei specificare che le radici sono contenute una dentro l'altra. Aspetto una vostra risposta, grazie mille.
Se \(G \) è un grafo bipartito e sia \( \Delta(G) \) il grado massimo dei sui vertici, allora \( \Delta(G) \) è uguale al numero minimo di colori necessari, denotato con \(m \) a colorare ciascun arco di \(G \) in modo tale che nessun arco adiacente abbia lo stesso colore.
Una direzione è facile infatti se \( m < \Delta(G) \) allora sia \( v \) il vertice corrispondente al grado massimo, abbiamo che da \(v \) escono esattamente \( \Delta(G) \) archi tutti adiacenti, pertanto non possiamo ...
Ciao a tutti
Dovrei scrivere una relazione cinematica, ma non ne vengo fuori.
La situazione è questa:
Date due aste di lunghezza $2R$ vincolate tra loro ad un loro estremo e vincolate al bordo di un disco di raggio $R$, viene chiesto di descrivere la posizione del centro del disco $C$ in funzione dell'angolo $theta$ che ciascuna delle due aste forma con la verticale.
Ringrazio chiunque sappia aiutarmi.
Buongiorno!
Avrei bisogno di una mano con un esercizio di algebra lineare sugli endomorfismi diagonalizzabili.
La traccia è la seguente: Sia φ un endomorfismo di uno spazio vettoriale V di dimensione n. Supponiamo che φ abbia n autovalori distinti. Dimostrare che esiste un vettore v ∈ V tale che l’insieme { $ v,varphi (v), varphi ^2 (v),... ,varphi ^(n-1)(v) $ } sia una base di V .
Io so che, avendo n autovalori distinti, esiste una base di autovettori, tale che la matrice associata a $ varphi $ rispetto a tale base è ...
Salve,
Sono alla ricerca di un libro che tratti tutta la fisica - dalla banale meccanica fino alla fisica nucleare -: i libri di testo liceali e universitari si incentrano molto sulla parte didattica, tralasciando formule e molti particolari storici.
Il libro "Storia della fisica" di Mario Gliozzi forse potrebbe fare al caso mio, ma è esaurito da anni. Voi avete qualche suggerimento? Grazie.
Quello che si deve dimostrare è questo:
Mia idea:
Dimostro per induzione
Passo base n=0
Abbiamo la funzione stessa, che è sempre maggiore uguale di 0
Ipotesi induttiva:
La sommatoria è maggiore uguale di 0 per ogni n
Dimostro che è valida per n+1
Per n+1 la sommatoria si può riscrivere come la somma delle derivate da 0 fino ad n, con l'aggiunta della derivata n+1-esima. Ora questa derivata n+1-esima vale 0 essendo la funzione polinomiale e di grado n, mentre la somma delle ...
Buongiorno, qualcuno conosce il libro in oggetto? Si riesce a compararlo con Halliday e Mencuccini?
Grazie.
Salve a tutti, sto appena introducendo qualche nozione di superfice in $ R^3$ però ho delle difficoltà a capire la parametrizzazione.
una $r(u, v)$ che parametrizza una superfice contenuta in $ A sube R^2$ è scritta in forma vettoriale con l'utilizzo dei versori in questa forma:
$ r(u,v) = x(u,v)i + y(u,v)j + z(u,v)k $
Ora per quanto riguardavano le curve mi era abbastanza chiaro il concetto di paramettrizzazione e di come variavano le componenti, però adesso non mi è molto chiaro perché ho ...
Qualcuno è a conoscenza di come calcolare la radice quadrata di 4,2 alla quinta cifra decimale, utilizzando le serie numeriche?
Grazie a chi risponderà
Buonasera a tutti.
Oggi scrivo qui perchè ho disperato bisogno di aiuto con questo esercizio, dato che lunedì avrò un esame di algebra e geometria lineare su tale argomento.
Il testo è:
Dato il sottospazio U = [formule][formule]{(x, y, z, t) ∈ R^4| x = y + z, z = x + t}, trovare U⊥.
Scrivere il vettore(1, 0, 0, 0) come somma v1 + v2, dove v1 ∈ U e v2 ∈ U⊥.
[Risp.: U ha base (1, 1, 0, −1),(0, −1, 1, 1)
e quindi U⊥ = {x + y = t, y = z + t}, v1 =1/5(3, 1, 2, −1), v2 =1/5(2, −1, −2, 1)].
La base ...
Buonasera, ho provato a svolgere un esercizio sullo studio di una serie attraverso il criterio della radice (richiesto dall'esercizio), ma purtroppo non riesco a proseguirlo:
$ sum((3n)/(5n+1))^(2n-1) $
$ (3n)/(5n+1)>=0 $
$ lim((3n)/(5n+1))^((2n-1)/n)= lim((3n)/(5n+1))^(2)*((3n)/(5n+1))^(-1/n) $
E purtroppo da qui non so più come andare avanti.
Qualcuno potrebbe aiutarmi?
Grazie in anticipo.
\( \newcommand{\pt}[3]{\Bigl(\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\Bigr)} \)Ciao. Trovare tutte le basi di \( \mathbb Q^3 \) contenute in \( E = \left\{\pt{2}{-3}{0},\pt{1}{-2}{1},\pt{1}{1}{0},\pt{0}{-1}{4}\right\}\subset\mathbb Q^3 \), dove \( \mathbb Q^3 \) è un \( \mathbb Q \)-spazio vettoriale.
Trovare una base è banale: dato un qualsiasi sottoinsieme finito \( E \) di uno spazio vettoriale, se esso contiene almeno un vettore non nullo \( l_1 \), l'insieme ...
Problema sui fluidi, urgente per favore.
Miglior risposta
un cilidro di massa 100g e volume 60,5cm^3 galleggia in un liquido. La sua altezza totale è 9,75cm e la parte immersa ha un'altezza di 6,15cm. Qual è la densità del cilindro?Qual è la densità del liquido?
Ho visto soluzione qui
https://forum.skuola.net/fisica/una-mano-con-l-equilibrio-dei-fluidi-87279.html
ma non capisco perchè la formula del gallaeggiamento è V/Vo=Do/D, li' vengono messe le altezze e poi V è il volume del liquido spostao e viene messa l'altezza perchè? E poi dall'esercizio ...
Ciao, non capisco questo passaggio della dimostrazione. Data $L(u,v)=\int_{a}^{b}\sqrt{u'^2+v'^2}dx \quad \forall u,v\in W_{per}^{1,1}(a,b)$, riparametrizziamo la curva, ponendo $y=\eta(x) = -1 + \frac{2}{L(u,v)}\int_{a}^{x}\sqrt{u'^2+v'^2}dx$. Come ottengo $y$? Grazie
In un punto di un solido in equilibrio è assegnato il seguente stato di tensione $[T]=[[0,0,-2],[0,0,3],[-2,3,12]]$
Determinare
1) Se lo stato di tensione è monoassiale, biassiale o triassiale;
2) Tensioni principali e direzioni principali di tensione;
3) Equazioni di eventuali piani scarichi;
4) Tensione tangenziale massima e relativa giacitura;
5) Tensione normale e tensione tangenziale per la giacitura di normale ${n}={-1/sqrt(3),-1/sqrt(3),1/sqrt(3)}$.
Sono riuscito a fare i primi 2 punti, mi spiegate come fare gli altri 3? ...
Salve ragazzi,
vorrei disegnare una spirale ricoperta da un certo numero $N$ di dischetti i cui centri $p_i$ giacciono sulla spirale e sono alla stessa "distanza" l'uno dall'altro; più precisamente vorrei che la lunghezza della porzione di spirale che congiunge $p_i$ e $p_{i+1}$ sia la stessa per ogni $i$.
Sono partito parametrizzando la spirale come
\[
\rho(\theta)=a\theta,\quad \theta \in [0,2n\pi],\ a>0
\]
dove ...
Un libro di geometria base in inglese, che sia completo come il nacinovich, per affiancarlo (ho intenzione di usare un buon libro di studio da affiancare al libro di nacinovich) esiste?