Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
giuscri
Ciao ragazzi! Sto leggendo un programma scritto dal mio professore e ho trovato qualcosa di veramente poco chiaro: #include <iostream> #include <ctime> // clock_gettime() nanosleep() #include <cstdlib> // srand() rand() class lottery { public: typedef unsigned short num_type; lottery(unsigned long long i_max_num = (1<<(sizeof(num_type)*8))) // Constructor { timespec current_time; ...
2
14 ott 2012, 14:01

thedarkhero
Considero la successione di funzioni definita da $f_n(x)=1/nlog(1+e^(nx))$. Per $x=0$ si ottiene la successione $f_n(0)=1/nlog2$ e si ha $\lim_{n \to \infty}f_n(0)=\lim_{n \to \infty}1/nlog2=0$. Fissato $x<0$ si ha $\lim_{n \to \infty}1/nlog(1+e^(nx))=0$. Fissato $x>0$ si ha $\lim_{n \to \infty}1/nlog(1+e^(nx))=\lim_{n \to \infty}xe^(nx)/(1+e^(nx))=x$. Quindi la successione $f_n$ converge puntualmente alla funzione $f(x)={(0,if x<0),(x,if x>=0):}$ su tutto $RR$. $\lim_{n \to \infty}"sup"_(x\in(-oo,0])|1/nlog(1+e^nx)-0|=\lim_{n \to \infty}1/nlog(2)=0$ perchè $d/(dx)(1/nlog(1+e^nx)-0)=e^(nx)/(1+e^(nx))>0AAx\in(-oo,0]$. $\lim_{n \to \infty}"sup"_(x\in[0,+oo))|1/nlog(1+e^nx)-x|=\lim_{n \to \infty}1/nlog(2)=0$ perchè $d/(dx)(1/nlog(1+e^nx)-x)=-1/(1+e^(nx))<0AAx\in[0,+oo)$. Quindi la ...
11
11 ott 2012, 15:53

Chiaaa97
due ciclisti transitano allo stesso istante in un incrocio vel 1 = 27 km/h vel 2= 31 km/h Ciascuno mantiene una velocità costante Dopo quanto tempo il loro distacco è di 1500 m? risultato in m/s Dovrebbe venire 22 m 30 s ! aiutatemi grazie:)
1
14 ott 2012, 13:53

teresamarmoriro-votailprof
$\lim_{x \to +\infty}(log(x-2)-logx-3log(1/x))/(cos(1/x)-1)$ $=\lim_{x \to +\infty}((log(x-2)/x)-(3sen(1/x)/(1/x)))/(-(1-cos(1/x)/(1/x^2))1/x^2)$ $=\lim_{x \to +\infty}(-3/x)(-2x^2)$ $=6x=+\infty$ io l'ho svolto i questo modo, chi mi sa dire se è giusto?

smaug1
$\lim_{(h,k)->(0,0)} (hk)/(h^2 + k^2)^(3/2)$ al quale sono giunto per definizione di differenziabilità (la funzione non è differenziabile). Se volessi farlo per maggiorazione? $\lim_{(h,k)->(0,0)} (hk)/(h^2 + k^2)^(3/2) <= k$ ? perchè no? Usando invece delle curve, rette, come devo fare in questi casi? Come quando ci sono la $x$ e la $y$ ho provato a fare: $\lim_{(h)->(0)} (h^2)/(2 h^2)^(3/2) = h^2 / (2h^3 ) = oo $

megan986
ciao a tutti, spero tanto che ci sia qualcuno che sappia aiutarmi. Ho una matrice Nxm che rappresenta N elementi di uno spazio m-dimensionale. L'algoritmo del projection pursuit permette di effettuare delle proiezioni su uno spazio di dimensioni K con k
3
13 ott 2012, 18:41

chaty
{[-2-(-2)^2-(-2)^3] *2^10} : (-2^3)^3 - [(-3)^3 *(-3)^11] : [(-3)^6]^2
2
13 ott 2012, 16:17

GlassPrisoner91
Ciao ragazzi, è il mio primo post. Mi servirebbe una mano per alcuni esercizi da svolgere nella prova intercorso di Matematica Discreta. Sareste così gentili da spiegarmi passo passo come si risolvono questi esercizi? Un grazie col cuore. Ecco gli esercizi: 1) Siano A, B, C tre insiemi tali che A ∩ B = C, B ∩ C = A e C ∩ A = B. Provare che A = B = C. Enunciare le leggi di De Morgan per gli insiemi. 2) Dimostrare che per ogni n>=3, si ha che n^2 > 2n + 1.

Sk_Anonymous
Sia \(\displaystyle X \) uno spazio metrico compatto e sia \(\displaystyle T:X \to X \) un'applicazione t.c. \(\displaystyle d(T(x),T(y)) < d(x,y) \) per ogni \(\displaystyle x, \; y \in X \) con \(\displaystyle x \ne y \). Provare che \(\displaystyle T \) ha un unico punto fisso su \(\displaystyle X \). L'idea mi era già stata suggerita per metà. Sull'esistenza: Definisco la funzione \(\displaystyle f(x) : = d(x,T(x)) \); è chiaro come essa sia continua (provarlo!). Pertanto essa ammette un ...
5
13 ott 2012, 17:39

brucaliffo1
Salve a tutti. Mi sono imbattuto in questo integrale: $\int_{-1}^{1} sin^2\theta d(cos\theta) $ e il risultato è $4/3$ ma non capisco perché. Ho provato a risolverlo col metodo dell'integrazione per sostituzione eseguendo il cambio di variabile $cos\theta$ $rarr$ $t$ ma non ottengo il risultato indicato. Potete spiegarmi dove sbaglio, o se c'è un errore nel risultato proposto? Grazie mille

Brancaleone1
Ciao a tutti Ho la funzione integrale $f(x)=int_x^(+ infty) g(t)=int_x^(+infty) arctan(1/t)/(t^2-t) dt$ Devo: 1) Cercarne il dominio; 2) Disegnarne il grafico. 1) Prima controllo che l'integrale abbia senso controllando la convergenza a $+infty$: $lim_(t to +infty) arctan(1/t)/(t^2-t) = (0 text( di ordine ?))/(+infty text( di ordine )2)$ Poiché non conosco l'ordine di infinitesimo del numeratore, me lo calcolo a parte rapportandolo con l'infinitesimo campione: $lim_(u to +infty) arctan(1/u)/(1/u)^alpha=0/0=text(Hopital)Rightarrow (-1/(u^2+1))/(-alpha u^(-alpha-1))=(0 text( di ordine 2))/(0 text( di ordine )alpha +1)=l Leftrightarrow 2=alpha+1 Rightarrow alpha=1$ quindi l'arcontengente in questione è infinitesimo di ordine 1, e perciò: $lim_(t to +infty) arctan(1/t)/(t^2-t) = (0 text( di ordine )1)/(+infty text( di ordine )2)=0 text( di ordine )1 (=2-1)$ ...

fu^2
Un esercizio per l'estate da cui viene fuori come l'ipotesi di essere integrabile risulti in qualche senso "fondamentale" per la legge dei grandi numeri... "Sia $(\Omega,\mathcal{F},P)$ uno spazio di probabilità e sia $X_n$ una successione IID definita su tale spazio con $E(|X_n|)=\infty$ per ogni $n$. Provare che $\sum_n P(|X_n|>kn)=\infty$ per $k\in\mathbb{N}$ e $\text{limsup}\frac{|X_n|}{n}=\infty$, qc . Dedurne che, posto $S_n=X_1+...+X_n$ allora $\text{limsup}\frac{|S_n|}{n}=\infty$, qc"
16
23 lug 2012, 13:41

Plepp
Salve ragazzi! Sono felice di farvi sapere che finalmente ho raccolto il coraggio necessario e ho compiuto il "grande passo" Mi sono trasferito da Ingegneria a Matematica Adesso seguo tre corsi: Analisi I, Geometria I e Algebra I, e dovrei procurarmi dei testi decenti per approfondire quanto detto a lezione. Il docente di Analisi consiglia: [*:szd6pv9k]Cerchi - Buttazzo, Primo corso di Analisi Matematica[/*:m:szd6pv9k] [*:szd6pv9k]Campanato, Lezioni di Analisi Matematica, prima ...
12
9 ott 2012, 17:54

Twinklet
2-|x^2-9|-x-6=3x qualcuno sa spiegarmi bene come si svolge ed in base a cosa determino quali risultati possono essere presi in considerazione e quali non soddisfano l'equazione? Domani ho il compito e non riesco a capirlo... :no Grazie mille in anticipo a chi mi da una mano :kiss
1
14 ott 2012, 09:51

giusyheart
Per favore potreste aiutarmi?? Grazie in anticipo 1) si consideri la funzione y=2- sen x/2. determinare il periodo e la funzione inversa. tracciare il grafico della funzione data nell'intervallo [0, 4pigreco]. 2) stabilire se sono limitate le seguenti funzioni: f(x)= 2 + cos x g(x)= tg x - 3 h(x)= 1 (tutto fratto) 2^x + 5 k(x)= arc tg(x + x^2 ) n(x)= 1 (tutto fratto) 1 + |sen x|
3
14 ott 2012, 08:11

fragolina98
1. Una boccetta di medicinale da 10 ml con contagocce può erogare 600 gocce di medicinale. Qual è in media il volume di una goccia? [ risultato : 0,017 ml ] Poi : 2. Nel campionato di calcio di serie 2008/2009, Zlatan Ibrahimovic giocò con l'inter segnando 25 reti in 35 partite. Quanti gol ha segnato, in media, in ogni partita? [ Risultato : 0,7 ] Grazie in anticipo a chi risponderà!
3
13 ott 2012, 13:06

login2
PREAMBOLO Come da titolo mi ritrovo a studiare la definizione di base di uno spazio vettoriale e trovo "Una base è un sistema di vettori generatori linearmente indipendente" Ok che cos'è un sistema di generatori? Lo so e quindi dico "Un sistema di vettori genera uno spazio vettoriale A solo se l'insieme di tutte le possibili combinazioni lineari di tali vettori coincide proprio con A, in altri termini per ogni vettore $vec a$ che appartiene ad A posso rappresentarlo come ...
4
11 ott 2012, 15:29

mary_Stella
ciao mi aiutate con questi problemi 1) due angoli supplementari sono il quintuplo dell'altro quanto misura ciascun angolo? 2 la somma di due angoli opposti al vertice e doppia di ciascuno degli angoli adiacenti calcola l'ampiezza dei quattro angoli 3) l'ampiezza dell'angolo somma degli angoli a,b,y è di 270°45'27'' l'angolo b è il doppio di a ,l'angolo y è il triplo di b calcola l'ampiezza di ciascun angolo 4)l'ampiezza dell'angolo somma degli angoli a,b,y è di 100° l'angolo a è il ...
1
12 ott 2012, 18:13

Mii_
Riuscite a farmelo? ho la verifica domani mattina alla prima ora e ho scoperto che questo è un eserczio, ma non riesco a svolgerlo! Stabilisci per quali valori del parametro k l'equazione x alla seconda/2k-4 + y alla seconda/k+1 = 1 rappresenta un'ellisse e in particolare una circonferenza e per quali vali rapprasenta un iperbole e in particolare un iperbole equilatera.
1
11 ott 2012, 20:44

g.longhi
Ciao ragazzi, avrei bisogno di una vostra mano. Sono iscritto al CdL in ing.elettrica, e sono al 3 anno. Ho superato analisi 1 e 2 senza troppe difficoltà, anzi mi son piaciuti parecchio. (eh sì, sono una pecora nera ) Tuttavia ho riscontrato parecchia difficoltà in ogni materia che abbia a che fare con elettromagnetismo, campi vettoriali e via dicendo, penso che il mio problema riguardi curve, superfici, integrali curvilinei, integrali di superficie, circuitazioni, rotori, divergenze, e ...
6
10 ott 2012, 00:38