Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Erikalvo
prendo come esempio questo integrale \( \int_{0}^{+\infty} \frac{sen(e^x-1)}{x^\frac{3}{2}}\, dx \) vorrei un po' capire e ingranare i passaggi Dunque... prima di tutto devo stabilire la continuità o meno della funzione sull'intervallo di integrazione. Teoricamente devo dimostrare che è continua in ogni punto dell'intervallo, ma praticamente? p.s. non solo in quell'esempio... vorrei capire come muovermi in generale grazie in anticipo
2
15 giu 2013, 16:09

sdrabb1
ciao a tutti vole sapere se è corretto il metodo da me utilizzato per studiare il comportamento della seguente serie: il mio esercizio era: $ sum_(k =0 \ldotsoo) (k^2 4^k)/(2^k+5^k $ poichè è asintotica a $ sum_(k =0 \ldotsoo) (k^2 4^k)/5^k $ ho studiato la seconda, utilizzando il criterio del rapporto ottengo $ lim_(k ->oo ) (((k+1)^2*4^(k+1))/5^(k+1))/((k^2*4^k)/(5^k))=4/5 $ e poichè questo limite è compreso tra $ 0<L<oo $ per il criterio del rapporto la serie converge quindi converge anche la prima.... è corretta secondo voi il mio procedimento? vi ringrazio in ...
1
14 giu 2013, 20:35

morgantar
Salve ragazzi! Ho il seguente prolema: Sia g la funzione a + bx + cx^2 nell’intervallo [−π, π), e f il periodicizzato di g di periodo 2π. (a) Per quali b ∈ R esistono valori delle costanti a e c per cui i coefficienti di Fourier di f tendono a zero all’infinito come 1/n^2? (b) Per quali c ∈ R esistono valori delle costanti a e b per cui i coefficienti di Fourier di f tendono a zero all’infinito come 1/n^2? (c) Esistono valori delle costanti a, b e c per cui i coefficienti di Fourier di f ...
1
14 giu 2013, 11:33

burm87
Propongo questo quesito, che non mi ha creato particolari problemi per quanto riguarda lo svolgimento, ma non mi torna il risultato: La funzione reale di variabile reale $f(x)$, continua per ogni $x$ è tale che: $\int_0^2f(x)dx=a$ , $\int_0^6f(x)dx=b$ dove $a$,$b$ sono numeri reali. Determinare, se esistono, i valori $a$,$b$ per cui risulta: $\int_0^3f(2x)dx=ln2$ , $\int_1^3f(2x)dx=ln4$. Per lo svolgimento ho ...
2
15 giu 2013, 15:45

Valeinrima
ciao a tutti ragazzi, volevo chiedervi informazioni per quanto riguarda questi integrali. Sono tracce di esami che non sono riuscito a passare. $\int f(x)dx$ dove $ f(x) = (x^5 +x -4)/ (x^2 -1 )$ ho svolto l'esercizio dividento i polinomi, ricavando Q(x) = $ x^3 -x$ e ricavando l'integrale $ int x^3 + x - (x-4)/(x^2 - 1) $ ho sviluppato i 2 integrali immediati $ x^4/4 + x^2/2 - int (x-4)/(x^2 - 1)$ l'integrale rimanente l'ho diviso in 2 parti, così : $ int x/ (x^2 -1) - int 4 /(x^2 -1) $ visto che ho notato che manca il 2 al numeratore per essere ...
7
12 giu 2013, 13:57

y7xj0m
Ciao! volevo chiedervi se potevate dare conferma o smentita sul procedimento che ho usato per studiare la convergenza di questa serie: \[\sum_{n=1}^{\infty}\frac{settcosh(n)}{\sqrt{n^4+n^2+1}}\] Allora, prima di tutto: \(\displaystyle \sum_{n=1}^{\infty}\frac{log(n+\sqrt{n^2-1})}{\sqrt{n^4+n^2+1}}=\sum_{n=1}^{\infty}\frac{log(n(1+\frac{\sqrt{n^2-1}}{n})}{\sqrt{n^4+n^2+1}}= \sum_{n=1}^{\infty}\frac{logn+log(1+\frac{\sqrt{n^2-1}}{n})}{\sqrt{n^4+n^2+1}}\) Ora posso scrivere il termine generale ...
1
15 giu 2013, 14:05

matematicus95
Devo verificare il seguente limite:$lim_{x\to\3^+}e^(2/(3-x)) =0^+$ allora applico la definizione e quindi mi viene $0<e^(2/(3-x)) <epsilon$ la prima é sempre verificata devo risolvere la seconda,ma alla fine non mi viene un intorno destro di 3, perché ?
11
10 giu 2013, 15:55

giuliacarlino1993
Salve ragazzi ho problemi nel risolvere questo esercizio. Considera il piano proiettivo $ P^2 $ . Determina la dimensione dell'intersezione tra i sottospazi di equazione $ 3x0-x1+x2=0 $ e $ x0-4x2=0 $ , rispettivamente. Descrivi, inoltre, le coordinate omogenee dei punti in tale intersezione. Per risolverlo ho calcolato il rango della matrice $ ( ( 3 , -1 , 1 ),( 1 , 0 , -4 ) ) $ che è due allora per calcolare la dimensione del sottospazio proiettivo ho fatto $ dim (P(V))-dim(H) $ = ...

Flamber
Buongiorno, Per evitare di fare confusione, premetto che con $L$ indico il momento angolare, mentre con $W$ indico il lavoro. Non ho bisogno di aiuto per svolgere l'esercizio, quanto più che qualcuno mi aiuti a trovare risposta ad un dubbio che mi è sorto svolgendolo. "Un punto materiale di massa me descrive con velocità $v_1$ costante una circonferenza di raggio $r_1$ e centro O, sopra un piano orizzontale liscio. Esso è tenuto sulla ...

Erikalvo
Rieccomi xD la funzione in questione è \( |\frac{x-3}{x-1}|*e^{|x-1|} \) il dominio è \( (-\infty,1) \cup (1,+\infty) \) Ora... avendo a che fare con 2 valori assoluti, come definisco la \( f(x) \) ? C'è una regola generale?
8
12 giu 2013, 19:25

claudio_p88
Un bambino fa ruotare sopra la testa a 1,8 m da terra un sasso attaccato ad una corda, lungo una traiettoria di raggio pari a 1m. La corda si spezza e la corda schizza via orizzontalmente, andando a colpire il terreno a 10m di distanza dalla verticale del punto di distacco. Quanto valeva l'accelerazione centripeta durante il moto circolare? Non so proprio da dove iniziare, non chiedo di avere il problema risolto, mi basta anche capire come impostare il problema, grazie.

Chiara Lucarini
vi prego cercatemi di spiegare il piano cartesiano o la probabilita' visto che ho gli esami :(
1
14 giu 2013, 16:28

peppevolley
ciao a tutti ragazzi..stavo svolgendo questa equazione differenziale ma non mi viene il risultato. l'equazione è y'' - 3y' + 2y = (x+1)e^(2x) Ho svolto l'equazione caratteristica trovando le radici k1 e k2 rispettivamente a 1 e 2 e quindi y = c1 e^x + c2 e^2x p(x)= e^2x(x+1) e quindi q(x)= Bxe^2x Faccio la derivata prima e seconda di q(x) e vado a sostituire a quella di partenza. Sbaglio qualcosa??? Alla fine trovo che y=c1e^x + c2e^2x + e^2x(x+1) Ditemi cosa sbaglio o ...

dumbapple
Buongiorno, il titolo forse non è dei migliori, ma ho una domanda da fare a cui non riesco a dare una risposta (nella situazione attuale). Questa domanda è stata proposta ad un esame di Fondamenti di algebra lineare e geometria per ingegneria, ed è la seguente: Siano A e B due matrici per cui esiste una base V = {v1, ... , vn} di autovettori per entrambe (non necessariamente relativi agli stessi autovalori). E' vero che AB = BA? Ora io non riesco a capire così com'è formulata la domanda se A ...
1
15 giu 2013, 07:59

FabrizioCwoman
Ciao a tutti.. ho un dubbio forse anche un poì banale. Ho la funzione $ g(x,y)=sqrt(1-x^2-y^2) $ Il dominio è naturalmente $ AA (x,y)in R^2 | x^2+y^2<1 $ Ora mi trovo le mie curve di livello ponendo uguale a c. Io faccio i seguenti procedimenti $ |1-x^2-y^2|=c^2 $ per valori di x^2+y^2 minori di uno non cambio nessun segno e ottendo $ x^2+y^2=1-c^2 $ che sono circonferenze concentriche che "partono" da $g(x,y)=1$ per valori maggiori cambio segno e quello che mi esce è $x^2+y^2=1+c^2$ Ora questo va ...

ImNoTaGenius1
Salve a tutti! Nel fare alcuni esercizi mi sono imbattuto nel seguente sistema di equazioni differenziali lineari: $ { (x'=x-4y ),( y'=x+y ):} $ L'esercizio vuole sapere la soluzione che soddisfa la condizione iniziale $ (x(0),y(0))=(0,1)$ Per svolgere l'esercizio io scrivo la matrice per trovare gli autovalori. $ | ( 1-lambda , -4 ),( 1 , 1-lambda ) | =(1-lambda)(1-lambda)+4=lambda^2+1-2lambda+4=lambda^2-2lambda+5=0 $ Quindi: $ lambda=1+-sqrt(1-5) $ Ossia: $ lambda_1=1+2i $ e $ lambda_1=1-2i $ In aula non abbiamo studiato i casi con le radici complesse percé nel corso di Analisi 1 ...

ZetaFunction1
Mostrare che, se il massimo comun divisore tra $a$ e $b$, definito come $(a,b)$, è uguale a 1, allora $(a+b,\frac{a^p+b^b}{a+b})= 1 $ oppure $p$. Dove $p$ è un numero primo diverso da 2.

gcan
Se ho il campo vettoriale $F=(e^x+y^2,2xy+x)$ e devo vedere se il campo é conservativo devo calcolare il rotore,giusto? Secondo l'esercizio lo dovrebbe essere quindi il rotore deve essere =0, ma a me non risulta , $2y+1=2y$ !! Cosa sbaglio?
2
15 giu 2013, 12:21

LucaDV1
Sto studiando la serie di Fourier e stavo visionando degli esempi di esercizi Non mi è chiaro un passaggio che si fa durante i coefficienti della serie di Fourier Per esempio data la funzione f(x) = x , con -pi
2
15 giu 2013, 11:37

ImNoTaGenius1
Salve a tutti! Apro questa discussione perché, dovendo svolgere a breve un esame di Analisi 2 da 9 CFU per il mio corso di studi ingegneristico, ho ancora vari dubbi sulla risoluzione di molteplici esercizi. Qui di seguito scriverò gli esercizi ed i miei tentativi per risolverli. Credo che scriverò parecchi esercizi... Spero che qualcuno mi possa aiutare nella risoluzione di almeno una parte di essi! Grazie anticipatamente 1) Si calcoli il volume del solido che si ottiene facendo ruotare ...