Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Ciao a tutti, sto provando a trovare gli autovalori delle matrici con parametro k e la diagonale al variare di k, mi chiedevo in base a questa matrice:
k k+7 5-k
0 k+4 0
1 -2 4
ho fatto un po un casino con la tabella ma è una matrice! , comunque ho trovato gli autovalori facendo (k+4-λ)((k-λ)(4-λ) -5+k)
e ho trovato:
λ(1) = k+4
λ(2) = 0
λ(3) = k+4
(con queste informazioni so già che la matrice non è diagonalizzabile ma l'esercizio è fatto proprio per essere diagonalizzabile e trovare i ...
mi potete dire se ho fatto bene e aiutare con i punti che non so fare?
ESERCIZIO 1)
a) $ L=prod_(i = 1)^(n) (3theta^n)/x^4 =(3^ntheta^3n)/(Pix_i^4) $
b) dato che il dominio della funzione di verosimiglianza dipende da $ theta $non si può applicare il metodo.
La funzione di verosimiglianza è una funzione crescente di $ theta $pertanto abbiamo che $ theta $< min (x1....xn) quindi $ hat(theta) <min (x_1......x_n) $
c) $ F_x=-theta^3/x^3 $
d) ????? come si fa????
2)a) $ fx|y(x|y=y)=3x^2 $
4)
a) $ I_0.95=[bar(x) -t_(4;0.975)*S/sqrt(n); bar(x) +t_(4;0.975)*S/sqrt(n)] $
cioè ...
Ciao a tutti, ho un problema con la definizione di vettori linearmente dipendenti/indipendenti.
Sono linearmente indipendenti quando dalla loro combinazione lineare = 0 ottengo x, y e z uguali a 0, cioè nulli.
La soluzione di una vecchia prova d'esame afferma che i vettori sono linearmente indipendenti se e solo se il determinante della matrice della combinazione dei vettori è diverso da 0.
E fin qua va bene.
Consideriamo però un esempio.
Ho i vettori $v1 = (1, -3, 7); $ ...
Come risolvo $ (x+2)/(log^2(x+2)) * (2log(x+2) - 1)$ ? Non riesco a venirne a capo...
PS: log è il logaritmo naturale.
Buon pomeriggio a tutti.
Penso di non aver molto chiaro i fluidi.
Questo esercizio chiede di calcolare il lavoro che deve un sommozzatore per portare in superficie una botte con una massa di 92 kg e un volume di 30 litri che si trova sott'acqua ad una profondità di 20 m.
sul corpo agiscono forza peso, forza di Archimede e dovrebbe anche esserci la forza di spinta del sommozzatore no?
io ho immaginato che la somma algebrica di queste 3 forze per lo spostamento di 20m sia il lavoro compiuto. ...
Salve a tutti,
ho iniziato a studiare tecnica delle costruzioni dopo una parecchia parentesi di inattività e mi trovo con problemi nello svolgimento del seguente esercizio:
Tema:
Si Dimensioni la travatura rappresentata di luci L=300 cm e H=500 cm, e il giunto colonna fondazione tenendo conto che:
- è realizzata in acciaio S275JR
- è soggetta a carichi concentrati F=55KN
- la fondazione è realizzata in c.a. con calcestruzzo R'ck 250
Ora mi sono fermata dopo aver calcolato le razioni ...
Salve,
ho un esercizio di probabilità congiunta il cui testo è il seguente:
Siano X ed Y due variabili casuali che possono assumere i valori 0; 1; 2.
La funzione di distribuzione di massa congiunta e' PX;Y (i; j) = c(1 + ij) per una opportuna costante c. Determinare il valore della costante; determinare la distribuzione marginale della X e della Y , dire se sono variabili indipendenti;
calcolare E(XY ) e P(X >= Y ).
Il problema è che non riesco a riempire la tabella delle distribuzioni ...
Vorrei proporvi un'esercizio che personalmente non riesco a svolgere, perché non so proprio come procedere.
Il sistema è il seguente:
$ { ( y+(h+1)z=0),( x+y-z=h ),( hx+hy=-1 ):} $
con h reale.
L'esercizio chiede per quale valore di h il sistema proposto è equivalente al sistema formato dalle sole prime 2 equazioni.
Ciao a tutti
Ho un po' di problema nel risolvere un integrale... mi aiutereste
Ecco l'integrale:
$ (d\sigma)/(d\Omega)=r_0^2/1(1+sin^2\theta) $
con poi $ (d\sigma)/(d\Omega)=r_0^2/1(1+cos^2\phi) $
dove $ \phi=\pi/2-\theta $
quindi $ int (d\sigmad\Omega)/(d\Omega)=int r_0^2/2(1+cos^2\phi)d\Omega $
$ \sigma=r_0^2/2int(1+cos^2\phi)d\Omega $
ho problemi a svolgere questo integrale... pensavo di procedere così (so che il risultato finale deve essere $ 8\pi/3 $ .
(ovviamente, ho dimenticato di dire che $ \dOmega $ è una sezione infinitesima di angolo solido.
Dunque:
$ r_0^2/2 int_(0)^(2\pi) d\phi int_(0)^(2\pi)(1+cos^2\phi)d\phi $
dal primo ...
salve a tutti , ho svolto un esercizio riguardante la capacità di un condensatore, bloccandomi alla risoluzione della seconda parte.
Un condensatore è costituito da due lastre metalliche parallele di lato L poste a distanza d. il condensatore viene quindi riempito di un liquido di costante dielettrica $ kappa $ , come in figura A.
Calcolare la capacità del condensatore in funzione dell'altezza x del liquido. Eseguire lo stesso calcolo nel caso in cui il condensator venga riempito ...
L'esercizio mi chiede di trovare l'area del triangolo dai tre vertici e sia Q un quarto punto di calcolare la distanza dal piano che contiene i 3 punti precedenti:
$ P_1=(1,0,1)$
$P_2=(0,2,1)$
$P_3=(1,2,0) $
$Q=(2,1,2)$
Allora io ho fatto così ma non ne sono sicura, anzi credo proprio si sbagliato:
$ S= 1/2 \cdot |det( ( 1 , 0 , 1 ),( 0 , 2 , 1 ),( 1 , 2 , 0 ) ) |=1/2 \cdot |-4|=2 $
Per quanto riguarda la seconda parte, trovo il piano che contiene i 3 punti:
$ det( ( x-1 , y-0 , z-1 ),( 0-1 , 2-0 , 1-1 ),( 1-1 , 2-0 , 0-1 ) )=0 $
$ pi : (-2x-y-2z+2=0) $
$ distanza= (|ax_Q+by_Q+cz_Q+d|)/ sqrt(a^2+b^2 + c^2)=|(-4-1-4+2)| /(sqrt(9))=7/3 $
dove a b c e ...
CIAO,
non riesco a risolvere l'ultimo punto di questo problema:
un corpo attaccato ad una molla di costante elastica 100 N/m scivola su una superficie priva di attrito e si muove di moto armonico semplice. La legge oraria del moto del corpo è : x(t)=Acos(wt) con A=80 cm e w=5.2 rad/s . da altre due domande mi ricavo che il numero delle oscillazioni è 99.3 e che la velocità max è 4.16 m/s. Devo calcolare il modulo della velocità del corpo all'istante di tempo t=10 s. COME POSSO FARE.
Salve non riesco a risolvere questo esercizio:
un pendolo semplice ha lunghezza L. il corpo appeso ha massa di 0.4 kg e viene rilasciato da un angolo di 10 gradi. Sapendo che il pendolo compie 0.5 oscillazioni al secondo, calcolare :
a) la lunghezza del pendolo
b) energia totale del sistema
c) la velocità della massa quando passa nel punto di equilibrio.
Grazie!!
Salve,
ho un piano inclinato, e mi trovo dinanzi una traccia che come dati mi da il valore della massa, Forza applicata, e a volte mi da altro dato in alternativa fra angolo o attrito o entrambi.
Ecco, vorrei sapere, due cose:
1) se non mi viene specificato se il corpo sale o scende.... come procedo a risolvere?
2) e se viene specificato invece... quali sono le differenze fra corpo in salita o discesa? quali sono i fattori in gioco che si differenziano l'uno dall'altro?
GRAZIE!!!
Problemi di geometria 3 media
Miglior risposta
buongiorno ragazzi. non so fare questi problemi: qualcuno può spiegare passo passo il procedimento?
1 L'area del semicerchio di diametro AB è 14,1 cm quadrati e la semicirconferenza di diametro AC è lunga 6,28cm.
sapendo che i segmenti HP e CK misurano rispettivamente 2,88cm e 1,8 cm e che il segmento RB misura 4 cm, calcola l'area del triangolo ABC e il perimetro del pentagono APBRC
Risultati 9,92 cm quadrati e 19,4cm
non ci sn figure!!! aiutoooooo
Salve, vorrei un aiuto su questo esercizio perchè sono giorni che ci provo ma non arrivo alla risposta ...
Assegnati i seguenti sottospazi vettoriali di R4:
$ U = L((−1,2,−1,−2),(0,−2,0,1),(1,2,1,0)) $
$ W = L((1,1,2,1),(3,1,0,1),(−1,0,1,0)) $.
1)Determinare la dimensione e una rappresentazione cartesiana di $ U + W $. RISPOSTA: Una rappresentazione cartesiana `e, ad esempio, −x + y −z + 2t = 0, dim(U + W) = 3
Il mio problema su questo primo punto è proprio la somma di sottospazi ... In teoria per ricavarmi una base di U+W dovrei ...
Sperando di non essere nuovamente O.T. (penso sia categoria "logica"), i miei dubbi sono:
1) sia A= (a,b,c,d) ed R la relazione su A definita da R= [(a,a), (a,b), (b,a), (b,b), (c,c), (d,d)]. R non è transitiva perchè aRb->b nonR c quindi a non lo sarà con c. E' corretta?
2) sia A= (a,b,c,d) ed R la relazione su A definita da R= [(a,a), (b,b), (c,c), (d,d), (b,c), (c,b)]. Idem, non è transitiva (ma simmetrica e riflessiva sì) perchè ad es. bRc ma c nonR con d, dico giusto? Grazie!
In questo esercizio mi chiede di trovare la tensione tangenziale massima che è data dalla somma della tensione tangenziale massima dovuta al taglio più quella torsionale calcolata nel baricentro (y=0):
$ tau = (T*B/2)/J*s $
dove J torsionale è : $ J=(B*s^3 +(H-s)*s^3)/3 $
$ tau =(T*Sz)/(Jz*s) $
dove Jz vale 400cm^4
e Sz* da me calcolato vale: $ Sz=B*s*(d-s/2)+s*(d-s)*((H-s)/2-(d-s)) $
Qualcuno può dirmi se come procedimento ci sono?, grazie in anticipo
Salve a tutti, ho riscontrato alcuni problemi risolvendo questo quesito di fisica che apparentemente mi sembra davvero semplice ma non riesco a trovare una soluzione. Il problema è questo:
Un uomo si lancia con una corda lunga 31 m. Sapendo che le sue oscillazioni non possono superare l'angolo pigreco/12 da cui è partito, calcola la sua distanza orizzontale dal punto più basso dell'oscillazione dopo 2,34s.
Io avevo pensato alla foruma s=r*cos(wt). Grazie mille.
Potete aiutarmi? Non riesco a fare gli esercizi da 117 a 120 di "La matematica a colori 2 Edizione Azzurra". Vi ringrazio per l'aiuto