Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Buonasera,
Ho un problema con i numeri complessi che proprio non riesco a risolvere:
$ (|z|^3-1)(z^2+1) = $
Dove devo trovare le soluzioni.
Io pensavo di iniziare così, sviluppando la $z$
$ ((sqrt(x^2+y^2))^3-1)*((x+iy)^2+1) $
Ma non riesco a risolvere la prima parentesi.
Come posso risolvere?
Grazie
Dato il $K-$spazio $V$ e la sua proiettivizzazione $P(V)$
Il punto $[v] inP(V)$ sarebbe $<v> -{0_v}$ no?
Perché oggi ho letto che $P(V)$ è l’insieme delle rette vettoriali di $V$ quando in realtà sono le rette si, ma private del vettore nullo.

Salve ragazzi,
Da sempre, data una funzione a tratti periodica definita in 2 intervalli, prendo il primo intervallo disegno la funzione, prendo il secondo disegno l'altra funzione e poi "copio" quell'andamento in tutto il grafico restante.
Adesso però riflettendoci non riesco a capire perchè. Mi spiego meglio, presa una funzione del genere:
$f(x)={x $ se $- \pi<=x<0, 1 $ se $- 0<=x<pi}$ (scusate ma non so come scriverla a tratti)
E considerando il suo prolungamento di periodo 2pi, ...

Tra gli interi che partono da $1$ e arrivano fino a $10.000.000.000$ compresi sono di più quelli che contengono la cifra $1$ o quelli che non la contengono?
Cordialmente, Alex
Un ciclista che si muove in linea retta e velocità costante, passa davanti ad un semaforo al tempo t=0s. Dopo 10s si trova a 100m dal semaforo. Calcola velocitá.
ho sfruttato S=So+V*t
(So= spazio iniziale)
poi ho portato So al primo membro e diventa:
S-So= Vt
100m-0=Vt
100m=Vt e poi ho diviso entrambi i membri per t
100m/t= Vt/T quindi diventa
100m/t= V
100m/10s= v e quindi v= 10 m/s
il risultato viene giusto, però non so se per risolverlo bisogna sfruttare S=So+Vt oppure no e fare subito s/t=v ...

Salve,
Vorrei sapere se e come si possono dimostrare in modo semplice e chiaro i 2 principi di equivalenza delle equazioni.
Io ho pensato alla semplificazione rispetto alla somma e rispetto al prodotto, che sono conseguenze degli assiomi dei numeri reali.
Se a+b=a+c allora b=c.
Se ab=ac con a diverso da 0, allora b=c. Potrebbe andare bene come dimostrazione?.
Grazie.

Buongiorno, cercavo di dire per quali valori del parametro $ alpha $ la seguente serie converge
$ sum_(n = 1)^oo (n^alpha)/((n^6+4n)^(1/3)-sqrt(n^4-1)) $
ho pensato di partire razionalizzando, quindi se chiamo:
$ A=(n^6+4n)^(1/3) $ e $B=sqrt(n^4-1) $ visto che $(A-B)(A^2+AB+B^2)=A^3-B^3$ ottengo:
$ sum_(n = 1)^oo (n^alpha*(n^6+4n)^(2/3)-((n^6+4n)^2*(n^4-1)^3)^(1/6)+n^4-1)/((n^6+4n)-(n^4-1)^(2/3)) $
ora avrei bisogno di un aiuto perchè non so come proseguire, non so neanche se razionalizzare è stata una buona idea o si poteva fare di meglio.
Grazie in anticipo.

Ciao a tutti mi serve un ultimissimo aiuto per questo limite, ho capito che devo applicare il limite notevole di nepero, ma non riesco a capire come togliere il 2 nella parentesi. Il limite é questo: $(e^-x)(e+(2/x))^x$ grazie.
Un ciclista che si muove in linea retta e velocità costante, passa davanti ad un semaforo al tempo t=0s. Dopo 10s si trova a 100m dal semaforo. Calcola velocitá.
ho sfruttato S=So+V*t
(So= spazio iniziale)
poi ho portato So al primo membro e diventa:
S-So= Vt
100m-0=Vt
100m=Vt e poi ho diviso entrambi i membri per t
100m/t= Vt/T quindi diventa
100m/t= V
100m/10s= v e quindi v= 10 m/s
il risultato viene giusto, però non so se per risolverlo bisogna sfruttare S=So+Vt oppure no e ...

Tangente e valore angolo
Miglior risposta
Data la tangente dell'angolo(alpha)=4/5 e 0

Salve a tutti.
Avrei bisogno che qualcuno mi spiegasse come poter svolgere questa disequazione
$|3-sqrt(-2x-12)|-sqrt(x+9)>0$
Grazie mille in anticipo
Avevo pensato di portare $sqrt(x+9)$ a destra e poi fare le due condizioni sul modulo.
Fatto questo pensavo di togliere il modulo e in ognuno dei due sistemi mettere le condizioni per entrambe le radici ed elevare poi al quadrato.
Però non arrivo a nessuno risultati plausibile.

Ciao, non riesco proprio ad impostare questo esercizio, penso mi manchi la creatività...
Riporto la consegna:
Sia K un campo, dove le operazioni sono indicate con gli usuali
simboli +, ·. Partendo dalle 9 proprietà date nella definizione di campo, dimostrare che:
- Se l’elemento neutro della somma è anche elemento neutro del prodotto, allora
il campo ha un solo elemento. (Una volta dimostrato questo, siamo autorizzati
ad usare due simboli diversi per indicarli, ovvero 0, 1.)
Buonasera avrei bisogno di un aiuto per la ricerca degli estremi della seguente funzione con il modulo: f(x,y)=(xy-x^2)exp(-IxI-IyI). Per semplificare i conti si può notare che la funzione è simmetrica rispetto all'origine per cui considererei sia x>0 e y >0, però non sono convinta e avrei difficoltà nel proseguimento. Grazie in anticipo

Sera a tutti, avrei bisogno del vostro aiuto,
il mio dubbio nasce in un punto di un limite che ho portato a risoluzione ma mi sono incagliato in uno scoglio sciocchissimo che quasi provo vergogna a chiedere ma non riesco a superarlo.
Insomma sono arrivato ad avere lim x->-2 (x^2 -4) a denominatore.
Bene:
se scompongo il quadrato avrei: (x-2)*(x+2)
-caso x-> -2(-) : (-4)*(0+) che essendo a denominatore di una frazione con numeratore>0 esiterebbe in +∞
-caso x-> -2(+): (-4)*(0-) che essendo ...

Salve,
vorrei chiedere se è lecito usare i simboli di Landau per risolvere limiti di funzioni a più variabili.
Se, ad esempio, avessi il seguente limite:
$ lim_((x,y,z) -> (0,0,0)) (xyz)/(x^2+y^2+2z^2) $
Potrei risolverlo per casi cosiderando $ x,y,z $ dello stesso ordine di grandezza, $ x=o(y), z=o(y) $ , $ x=o(y), y=o(z) $ et cetera e dire che il limite esiste se e solo se il limite è uguale in tutti i casi?
Purtroppo non sempre riesco a farli con le maggiorazioni o in coordinate polari (soprattutto quando i limiti ...
Salve,
avevo curiosità riguardo la relazione tra raggio di convergenza di una serie di potenze in campo complesso e la distanza dai poli della funzione rispetto al punto in cui è centrata. Da quel che ho capito dai teoremi è che si può sviluppare in campo complesso una serie di potenze anche in un intorno di un punto in cui non è olomorfa, con tutte le implicazioni che ne derivano ( derivabile in senso complesso), a differenza che nei reali. Adesso il raggio delle serie è definito sempre con ...
Salve,
Come si dimostra che, se una funzione f(x) integrabile in ogni intervallo $[a,b] in RR$,
allora
$ \int_{-a}^{0} f(x)\ dx= \int_{0}^{a} f(x)\ dx $ se la funzione $f(x)$ è pari.
allora
$ \int_{-a}^{0} f(x)\ dx= -\int_{0}^{a} f(x)\ dx $ se la funzone $f(x)$ è dispari.
?
Salve a tutti, mi servirebbe una mano con una delle ipotesi per la formula di Bredt ossia:
riguardo la continuità del flusso di tensioni
quella figura si ottiene prendendo un concio del solido di dSV di dimensione dz quindi lo sezioniamo con due piani ortogonali all'asse z, dopo di che andiamo ulteriormente a sezionarlo con due piani paralleli all'asse z, quello che rimane è la porzione di solido in figura
sulle facce laterali agiranno le tensioni reciproche alle tensioni ...

Ciao! Ho dei dubbi su come impostare la risoluzione di un problema. Il testo è:
Un motoscafo di massa 1000 [kg] sta navigando alla velocità di 90 [km/h] quando il motore si arresta. L'intensità della forza di attrito fra scafo e acqua è proporzionale alla velocità del natante: fk = (70 [Ns/m])v. Calcolare il tempo impiegato dalla barca per rallentare a 45 [km/h].
Per il secondo principio della dinamica: $fk = ma$
Potrei sostituire all'equazione $a = \frac{v-v_0}{t}$
Ma la velocità in ...

Prima legge di gay-lussac
Miglior risposta
Ciao a tutti, potreste aiutarmi con questi problemi?
1) un recipiente munito di un pistone a tenuta stagna e con attrito trascurabile contiene 2,5 × 10 alla -4 m³ di gas alla temperatura di 0°.
Quale volume occuperà il gas alla temperatura di 35°? [2,8 x 10 alla -4 m^3
2) una certa quantità di gas è libera di espandersi a pressione costante. alla temperatura di 800 K il volume del gas è doppio rispetto quello iniziale.
qual è la temperatura iniziale? [400 K]
so anche le formule ...