Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Buonasera,
sono giorni che mi scervello su questa tipologia di esercizi: si tratta di dire se un H dato è un sottoinsieme chiuso e denso di C([-1,1]) con la norma infinito.
Ho difficoltà proprio nell'impostazione dell'esercizio pur sapendo la definizione di "sottoinsieme chiuso" e "sottoinsieme denso".
Vi riporto un paio di esempi così magari riuscite a spiegarmi come procedere
H= {f è un polinomio}
H= {f(0)=0}
Grazie in anticipo per la vostra disponibilità
Giulia
Buongiorno
sto cercando di rispondere ad una domanda vero/falso che riguarda un insieme definito come segue:
\[A=\lbrace x \in \mathbb{R}| x=\frac{2}{n}, n \in \mathbb{N}-\lbrace 0 \rbrace \rbrace \]
la domanda è si tratta di un intervallo?
Parto dalla definizione data dal libro (Matematica blu):
"Un intervallo è un sottoinsieme di numeri reali che corrisponde a una semiretta (intervallo illimitato) o a un segmento (intervallo limitato) della retta reale..."
L'insieme proposto fornisce ...

Mi date una mano con questo problema? Io ho considerato che la forza orizzontale che sposta il cuneo sia la componente x della forza vincolare N che la superficie del cuneo esercita sulla bacchetta, opposta in verso. Quindi se N= mg× cos(teta). Nx= mg× cos(teta)× sen(teta). Ditemi se sbaglio, è la prima volta che affronto questo tipo di problema.
ho un problema di geometria che non riesco a risolvere.
Dato un trapezio isoscile con i seguenti dati:
Area= 42 mq.
B=22 m
b/h =7/6
calcola il perimetro. Sapete aiutarmi come calcolare la base minore e altezza con i dati sopra riportati?
grazie

Buongiorno, vi propongo questo esercizio di algebra lineare :
Sia A lo spazio delle soluzioni di -x-2y=0 e B lo spazio delle soluzioni del sistema $ { ( x+y-z=0 ),( 2x+3y-z=0 ):} $ Determinare senza usare la relazione di Grassman :
a)Dimensione e base di A
b) Dimensione e base di B
c) Dimensione e base di $ AnnB $
d) Dimensione e base di A+B
I punti a,b sono rapidi e a meno di errori ho trovato :
A =(-2y ; y ; z) da cui Base di A ={(-2 ; 1 ; 0),(0 ; 0 ; 1)} e Dim(A)=2
B= ( -2y ; y ; -y) da cui ...

Buonasera e buone feste
Si determini una base dello spazio somma dei seguenti sottospazi di \(\displaystyle \mathbb{R^4} \)
\(\displaystyle U= \)
\(\displaystyle V= \)
Procedo nel seguente modo:
1) Verifico se i due sistemi sono linearmente indipendenti, con semplici calcoli si verifica che sono linearmente indipendenti. Quindi i vettori che compongono rispettivamente i sottospazi \(\displaystyle U,V \) sono delle basi.
2 ) Unisco le due basi ...

Buonasera ragazzi,
Ho un dubbio sulla soluzione di questo esercizio,
sia data l-applicazione lineare f. r3->r3 associata alla matrice
A= 1 0 2 nella base canonica.
0 1 0
0 2 -1
Si determini la matrice B associata ad F se fissiamo la base (e1, e1+e2, e3) nel codominio.
Qualcuno riesce ad aiutarmi, spiegando un po- i vari passaggi? Grazie.
Sergio

La prima e la seconda urna le chiamerò rispettivamente U1 e U2
Dati:
U1 = 20 palline ( 6 bianche, 14 verdi )
U2 = 50 palline ( 21 bianche, 29 verdi )
Esercizio:
Calcola la probabilità che estraendo contemporaneamente tre palline una di esse sia verde. Ciò nell'ipotesi che le tre palline vengano estratte da una sola urna la quale viene scelta a caso lanciando una moneta.
Ragionamento:
Di base ho pensato a qualcosa di ...

Sapreste spiegare perché è uguale a $P_(t+1)~N(0,σ^2 )$?

Nella legge di Fourier :
$q=-knablaT$, il tensore di conducibilità termica $k$ è definito positivo? Lo chiedo perché abbiamo ricavato la legge di Fourier dalla disuguaglianza di Clausius-Duhem per un corpo continuo, arrivando a dire che per qualsiasi $nablaT$ deve valere $q*nablaT<=0$, il che implica l'esistenza di un tensore del secondo ordine definito positivo $k$ tale che $q=-knablaT$, ma in letteratura non trovo niente riguardo alle ...

Testo: "Trovate tutte le soluzioni intere dell'equazione: $ xy+x+y+2=0 $ "
Io ho fatto cosí:
$ { (xy=0 ),( x+y=-2 ):} rarr { ( x=0 \vv y=0),( y=-2\vvx=-2):} $
quindi le soluzioni intere sono:
$ (0,-2),(-2,0) $
Cosa ne pensate?

Perchè :
$(h^3)/(sqrt(h^2+k^2)) <= h^3/|h|$

Qualcuno saprebbe dirmi come si calcola ?? Pensavo di calcolare il lavoro infinitesimo per poi integrarlo... Ma il problema è che non riesco ad esprimere lo spostamento $dP$ ....
$dL^c$ = $-2m*vec(v)$ $xx$ $vec(omega)$ $dP$
Aiutatemi ragazzi

Ciao,
Vorrei capire meglio una cosa riguardo le equazioni con modulo.
Mi riferisco a un particolare tipo: quelle con almeno due moduli più qualcos' altro fuori dai moduli.
So che devo riscrivere le equazioni senza modulo in base al segno degli argomenti dei moduli. Però non ho ben chiaro perché alla fine non posso accettare certe soluzioni che non sono in accordo con il segno degli argomenti dei moduli.
(Eventualmente farò un esempio).
Grazie.
Ciao a tutti,
devo determinare autovalori, rappresentazione degli autovettori e le trasformazioni che mettono nella forma canonica di Jordan la seguente matrice.
1 0 0
3 0 −1
−3 1 2)
Per quanto riguarda gli autovettori, ne ha solo uno A = 1, la molteplicità algebrica è uguale a 3 e quella geometrica è uguale a 2.
Nella soluzione dell'esercizio mi specifica che J, matrice di Jordan, J = TAT^(-1). Ma non riesco a calcolarmi le due trasformazioni.
La matrice di Jordan finale ...

Buonasera.
Volevo delle delucidazioni riguardo il metodo per trovare le soluzioni di un sistema quando esso è compatibile.
So che ci sono due casi, un primo quando il rango è uguale al numero di incognite, e bisogna usare appunto l'algoritmo di gauss-jordan, e vorrei sapere come si fa. il secondo caso quando invece il rango è minore del numero di incognite del sistema e bisogna ridurre la matrici a gradini e portare fuori, nella colonna dei termini noti, tutti gli elementi che sono fuori dai ...


Ciao,
Mettiamo che all'esame devo studiare (ad esempio) $f(x)=2^(cosx)$.
È evidente che non interseca mai l'asse delle ascisse.
Ma nell' esame sarebbe meglio scrivere:
"Intersezione con l'asse $x$, scrivere il sistema con l'asse $x$ e poi scrivere "non esiste $x inRR$";
Oppure far vedere che l'ho intuito prima di scrivere e quindi scrivere subito "non ci sono intersezioni con l'asse $x$".
Se scrivo il sistema potrebbe sembrare che mi sono ...

Ciao devo svolgere il limite sinistro e destro ,per x tendente a 0, di $y=a^(1/x)$.
Sul limite sinistro non ho avuto problemi perchè mi esce $a^-infty$ e quindi è uguale a 0.
Non riesco a risolvere il limite destro.Deve dare infinito ma non capisco come ci si arriva,non dovrebbe dare 0 come il limite sinistro?Grazie.