Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Lotek
Ciao. Riguardo ai numeri complessi conosco bene quasi tutte le proprietà, ma ho ugualmente alcune difficoltà nel risolvere le equazioni nel campo complesso. Esiste un metodo risolutivo valido per tutte? Ad esempio, se ho un'equazione complessa di secondo grado, la risolvo con la stessa formula che uso per le equazioni di secondo grado reali, tenendo presente che il discriminante [math]\Delta < 0[/math] può essere riscritto come numero reale positivo, moltiplicato per [math]i^2[/math]. In caso ...
1
28 giu 2011, 11:33

sssebi
Più che non capire come fare credo di non aver capito quello che effettivamente chiede il problema Provare che la funzione $ y(x)=1/((e^{x}+1)(e^{2x}+1)) $ , per ogni $ x in RR $ , soddisfa la condizione: $ int_(0)^(x) y'(t) e^{t} dt = g(x) $ La funzione g(x) la conosco, ho evitato di scriverla. Vorrei solo capire il significato dell'integrale e poi i calcoli per verificare l'uguaglianza con g(x) me li svolgo da soli. Grazie in anticipo
2
28 giu 2011, 23:10

rikk91
Salve a tutti come faccio a vedere se l'integrale $ int_(1)^(sqrt3) 1/sqrt(3-x^2) dx $ è convergente? Avevo pensato di vedere se converge la serie $ sum_(x = 0)^(oo) 1/sqrt(3-x^2) $ è giusto? In caso affermativo come devo procedere?
19
28 giu 2011, 14:14

Gost91
Salve ragazzi ho ancora un quesito per oggi, dovrei stabilire se il seguente integrale improprio converge: $\int_{0}^{infty} (1-e^(-x^4))/(x^3ln(1+root(3)(x^5))) dx$ Ora il calcolo della primitiva non mi pare abbastanza pratico, così ho pensato che la strada da intraprendere fosse un'altra (rispetto all'utilizzo della definizione per il calcolo) Quindi rovistando su internet (odio il mio testo di analisi) ho trovato che l'integrale si può studiare vedendolo come una sorta di serie numerica. Sperando di aver capito quello che ...
2
28 giu 2011, 23:01

lawrencetb
Ho un problema con questa serie di funzioni, $\z in CC$. $\f(z)=sum_(n=0)^(+infty) ((a^n+1)/b^n)((z^2-1)/z^2)^n$ Mi viene chiesto di determinare una espressione di f in termini di funzioni elementari. Vi riporto le domande prima di questa richiesta per capire anche se il processo è corretto. -Stabilire se è possibile trovare una serie di potenze $\g(z)=sum b_nz^n$ tale che $\f(z)=g((z^2-1)/z^2)$ ed in caso affermativo scriverne i coefficienti. Impongo $\t=(z^2-1)/z^2$ e quindi $\g(t)=sum_(n=0)^(+infty) ((a^n+1)/b^n)t^n$ Ora questa è una serie ...
2
28 giu 2011, 20:53

squalllionheart
Riconosco che ho fatto l'esame di analis 2 tanto tempo fa... non capisco perchè i proff dice che la dfferenza di una serie che diverge e una che converge è una serie che converge... Usa l'esempio $sum_(n=1)^oo 1/n-1/n^2$ Ho provato i 3 criteri standard rapporto radice e condensazione ma fatto tutti limite 1...Voi come lo dimostrereste?
10
28 giu 2011, 18:19

Gost91
Ragazzi è tutto il pomeriggio che sto cercando di risolvere il seguente integrale indefinito: $\int ((x+1)e^(x+1))/(x+2)^2 dx$ La primitiva esiste sicuramente in quanto è un esercizio preso da un esame di analisi. Mi sono mosso nel seguente modo (non cocludendo assolutamente nulla): pongo $t=x+2$ ottenendo $\int ((t-1)e^(t-1))/(t)^2 dt =\int (te^(t-1)-e^(t-1))/(t)^2 dt =1/e\int (e^t)/t dt - 1/e\int (e^t)/(t^2)dt $ a questo punto non so come andare avanti. Provando ponendo $t=x+1$ mi blocco subito effettuata la sostituzione.
5
28 giu 2011, 18:57

nokiaspace
Determinare il flusso del campo vettoriale F (x, y, z^2) attraverso la superficie canonica parametrizzata dal sistema: x= u cosv y= u sinv z= u con (u, v) appartenenti a [1, 2] x [0, $ pi $] , con normale indotta dalla parametrizzazione. Chi mi aiuta a risolverlo? Io ho utilizzato la matrice jacobiana per trovarmi la normale e mi viene $ sqrt(2) $ u, ma dopo come faccio a moltiplicarlo per F (x, y, z^2)?
19
28 giu 2011, 11:42

bradipo90
Mi chiedevo qual è il modo di svolgere questo esercizio in maniera formale: Siano $f_n,g_n$ due succesioni di funzioni continue da $RR->RR$ t.c $ lim_(n ->oo) ||f_n||_L_p=0 $ $|g_n|<=sqrt(pi)$ per quasi ogni $ x in [-1,1] $ Calcolare : $ lim_(n -> oo) int_(0)^(1) f_n(x)g_n(x)dx $ Mi ricordo di un teorema sulle serie di dirichelet che affermava che date due successioni $a_k$ e $b_k$ con $ k in NN $, se $a_k$ è uniformemente limitata e $ b_k$ è ...
3
28 giu 2011, 16:15

perlano
Ciao a tutti, vi chiedo una mano nel capire un passaggio che non mi è chiaro della risoluzione di un integrale usando i residui. Dunque: per calcolare l'integrale $ int_(-oo )^(oo ) x^2/(x^2+4)^2 dx $ considero la funzione complessa associata $ f(z)=z^2/(z^2+4)^2 $ e mi trovo: $ int_(-oo )^(oo ) x^2/(x^2+4)^2 dx = lim_(r -> oo) int_(del r) z^2/(z^2+4)^2 dz = 2 pi i res(z^2/(z^2+4)^2 , 2i) $ e fin qui ci sono. Ora il testo dice: Poichè $ res(z^2/(z^2+4)^2 , 2i) = lim_(z -> 2i) d/dz z^2/(z+2i)^2 = -i/8 $ si ha $ int_(-oo )^(oo ) x^2/(x^2+4)^2 dx = -2 pi i i/8 = pi/4 $ Quello che non ho capito è: come fa a passare da $ z^2/(z^2+4)^2 $ a $ z^2/(z+2i)^2 $ ??? Cosa mi sono perso? ...
5
28 giu 2011, 04:40

rikk91
Dire per quali valori di $alpha>0$ converge la seguente serie: $ sum_(n=1)^(oo) n/((n+1)^alpha - n^alpha) $ Si vede subito che per $alpha = 1$ la serie non converge quindi ho pensato di usare il criterio di Leibniz per vedere che converge se $alpha > 1$ Il procedimento è giusto o c'è un modo migliore?
7
28 giu 2011, 15:25

vaikkonen
Salve a tutti. Sono un nuovo utente ed avrei bisogno del vostro aiuto. Io ho questa forma differenziale: $(2*x)/((2*x^2+y^2))^2$ $dx$ + $(y)/((2*x^2+y^2))^2$ $dy$ Io ho derivato la prima rispetto ad x e la seconda rispetto ad y, ottenendo: $(8*x^4+2*y^4-16*x^2+8*x^2*y^2)/((2*x^2+y^2))^4$ $(4*x^4+*y^4-8*y^2+2*x^2*y^2)/((2*x^2+y^2))^4$ Essendo le derivate parziale differenti, la forma non è ne esatta ne chiusa, quindi non è integrabile, così ho pensato io; invece, dalla soluzione, risulta integrabile. Come faccio a ...
3
27 giu 2011, 16:48

Gost91
Salve a tutti ragazzi mi sono appena registrato al forum e volevo fare i complimenti a tutti per la qualità delle risposte! Oggi mi sono imbattuto nella seguente serie numerica, della quale se ne discute la convergenza: $\sum_{n=1}^infty (ln(n+1)^(2n!)/((n+1)!))$ Premettendo che ci ho litigato da piccino con la matematica generale, tentando di risolvere il quesito mi sono mosso nel seguente modo: Per prima cosa ho riscritto la serie come $2\sum_{n=1}^infty (ln(n+1)/n)$ sperando di aver applicato bene le proprietà dei ...
2
28 giu 2011, 17:20

riprendiamola
Buonasera a tutti, spero che possiate risolvermi questo dubbio, anzi più che un dubbio è capire come si imposta l'esercizio: Data questa funzione: $ f(x,y)=$ $ |x^2+y^2-16| $$(x-y)$ le derivate parziali come faccio a calcolarle visto il valore assoluto? Sdoppio la funzione in 2:se la funzione è maggiore di 0 e minore? se non ho il valore assoluto $fx=2x(x-y)+(x^2+y^2-16)$ $fy=2y(x-y)-(x^2+y^2-16)$
4
27 giu 2011, 19:57

kaia88
Ho il seguente campo $F(x,y,z) = a/x i + b/y j + c/z k $ con $i,j,k$ i versori. Devo dire se il campo è conservativo o meno. Intanto il campo non è definito lungo gli assi. Uguagliando le derivate miste esse tornano tutte uguali a zero : posso affermare che il campo è conservativo la dove è definito? Inoltre devo calcolare il lavoro svolto dal campo $F$ dal punto $ A= ( 1,1,1)$ al punto $B ( -1,-1,-1)$ lungo un percorso a scelta. Scegliendo un percorso a segmenti cioè andando ...
20
16 giu 2011, 17:17

ansioso
dovendo risolvere il seguente $\{(y'+x \ tany=0),(y(0)=1/2\pi):}$ $int (y')/tany dy=- int x dx \ => \ log |sen y|=-x^2/2 \ => \ |sen \ y| = e^(-x^2/2)\ e^c$ per determinare la $c$ $sen \pi/2=e^(-0/2) \ e^c \ => \ 1=1 e^c \ => \ log 1 = c\ log \ e \ => \ c=0$ giusto? il libro riporta che $c=1$... ma nn mi ritrovo!
3
28 giu 2011, 10:49

chenervi!
Salve ragazzi potete aiutarmi in questo esercizio,per favore... se ho il polinomio $p(z)= z^4 - 5z^3 + 10z^2 - 10z + 4$ e ho una radice $w=1 - i $ e devo determinare le altre tre, come faccio?? non so completamente farlo... mi potete dare qualche dritta? grazie in anticipo...
3
28 giu 2011, 12:36

AlyAly2
Ciao a tutti, avrei bisogno di aiuto per il seguente esercizio: Trovare tutti i numeri $ z in CC $ tali che $ |e^(-z^k)|<1 $ e disegnarli sul piano di Argand Gauss...qualche dritta su come procedere?
9
28 giu 2011, 10:40

innersmile-votailprof
Ho grossi problemi con gli estremi di integrazione degli integrali doppi e tripli e non riesco a capire come si fa a determinarli. Qualcuno è disposto a spiegarmelo? Magari si può partire da qui: verificare le seguenti uguaglianze, in ciascuna delle quali $A$ è l'insieme rappresentato in colore giallo nella figura accanto. $int int_(A) (dxdy)/(x^2+1)=1-log2$ Ora non capisco quali estremi devo prendere per i due integrali... $int int_(A) (dxdy)/(x^2+1)=int_(0)^(1) dx/(x^2+1) int_(?)^(?)dy$ E' giusto?
12
28 giu 2011, 12:53

bradipo90
Stavo studiando L'esistenza di questo limite con qualche dubbio: Con $ f in C^oo (RR) $ e $2pi-periodica$ e $c_k$ coefficienti di fourier di f. $ lim_(n -> oo) (n^2 sin(1/n^2)sum_(k = n)^(oo)|c_k|^2) /(1/ncos(n^2+n)+pie^1/n+pi^(1/2)) $ $ = lim_( n -> oo)( sin(1/n^2)/(1/n^2)sum_(k = n)^(oo)|c_k|^2) /(1/ncos(n^2(1+0(1)))+pie^1/n+pi^(1/2)) $ facendo un cambio di variabili $t=1/n$ il limite diventa: $ = lim_( t ->0) (sin(t^2)/(t^2)sum_(k = 1/t)^(oo)|c_k|^2) /(tcos((1/t)^2(1+0(1)))+pie^t+pi^(1/2)) $ poichè $ lim_( t ->0) sin(t^2)/(t^2)=1 $ e $ lim_( t ->0) tcos(1/t)^2=0 $ e $ lim_( t ->0) pie^(t)=pi $ Per cui mi rimane da ragionare su quella sommatoria dei coefficienti di fourier: La prima cosa che mi è venuta in mente: ...
3
28 giu 2011, 13:49