Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Ciao ragazzi, devo studiare l'intervallo di convergenza di questa serie.. $\sum_{n=1}^oo (-1)^n e^-n/n (log x)^n$
A me viene $\0<x<+oo$ solo che quando studio il carattere della serie agli estremi, per $\x=0$ non posso dire nulla perchè il logaritmo di 0 non esiste.. Mi sa che ho sbagliato qualcosa! Mi fate sapere quanto vi viene l'intervallo di convergenza?
(Per arrivare a quell'intervallo di convergenza, ho prima fatto la sostituzione $\logx=z$, poi ho studiato il carattere della serie ...
salve a tutti. Ho problemi nel seguente limite che mi trovo a svolgere durante uno studio di funzione. L'esercizio chiede di calcolare
$ lim_(<x> -> <-1^+>) (x+1)(ln(x+1))^2 $
Il problema viene dal fatto che il log sia elevato alla seconda. Il limite "ad occhio" fa $0$ ma non riesco a dimostrarlo (ci pregherei di non consigliare soluzioni che implichino l'utilizzo dei teoremi di De l'Hopital).
Grazie a tutti e buona domenica
Su alcune dispense per un esperimento di Fisica ho trovato questa affermazione:
l'esponenziale complesso conserva tutte le proprietà dell'esponenziale reale. In particolare:
$e^(i\alpha+i\beta)=e^(i\alpha)+e^(i\beta)$.
Ho provato a verificare il risultato, ma -premetto di essere partito un po' prevenuto- usando le formule di addizione per le funzioni seno e coseno non ho trovato niente, se non il risultato che mi aspettavo, cioé:
$e^(i\alpha+i\beta)=e^(i\alpha)*e^(i\beta)$
***
Post scriptum: riporto di seguito i calcoletti stupidi che ho ...
Come fare per calcolare la derivata di una funzione integrale quando la variabile x compare anche all'interno della funzione integranda?
Purtroppo non so usare le formule in questo forum, comunque il mio integrale è definito fra 0 e x^2, mentre la funzione integranda è 1/sen(x-t), con integrale, ovviamente, in dt.
Spero di essermi spiegata. Qualcuno può aiutarmi? Grazie!
scusate ma come risolvere $lim_(n->+infty)(log(cos(pi/n)))/(1/n)$ ?
l'ho provato mille e mille volte ma non so cos'altro fare
ciao a tutti!
avendo questo limite
$ lim_(x -> 3+) ln ((sqrt(x) - sqrt(3)) / sqrt(x-3)) $
mi dite il risultato?? perchè a me viene 0 ma non ne sono sicura XD
Vi chiedo per favore di aiutarmi in questo esercizio, sono riuscita a scriverne solamente una parte, poi non so come andare avanti. AIutatemi per favore. GRAZIE IN ANTICIPO
Sia (X,d) uno spazio metrico e sia \(\displaystyle \zeta \) una famiglia di sottoinsiemi chiusi e limitati di X non vuoti e a due a due disgiunti. Per \(\displaystyle S,T\in\zeta \) si ponga
\(\displaystyle \delta(S,T)=inf\{d(s,t):s\in S,t\in T\} \)
In generale \(\displaystyle (\zeta,\delta) \)non è uno spazio metrico: ...
Salve a tutti.
Come da titolo, ho studiato il relativo teorema, solo che mi sorge un dubbio. Se al posto dell'estremo di integrazione $x$ compare una funzione diciamo $g(x)$, il teorema è ancora valido (se no postare magari un esempio) ? Lo chiedo perché praticamente tutti gli studi di funzione integrale dei compiti del mio professore, sono funzioni integrali "composte".
Grazie a tutti !
Salve ragazzi,
Avrei una domanda per voi : dal momento che la funzione esponenziale è definita in tutti i reali se la base è maggiore di zero e la radice n-esima di un numero può essere intesa come un'esponenziale con esponente frazionario...come mai i libri riportano che la radice vale solo se l'indice appartiene ai naturali?
Grazie mille
ciao ragazzi sto studiando le successioni definite nel campo $CC$. Ho un dubbio riguardo la notazione che da il mio libro e volevo solo capire se è sbagliata la notazione del mio libro oppure quella che io sto per scrivere. Dallo studio delle successioni in analisi 1 so che una successione si dice assolutamente convergente se: $sum_(n = 1)^(+infty) |x_n|$ è convergente, cioè se la somma dei moduli è convergente. Ora dato che sto lavorando sul campo dei numeri complessi, dove è indotta la ...
Ragazzi è possibile dimostrare analiticamente che al tendere di $\a$ all’infinito la funzione $\tanh (ax)$ tende alla funzione $\sgn (x)$?
Praticamente è molto semplice…infatti mi è bastato tracciare un paio di grafici per capirlo...ma per pura curiosità vorrei verificarlo analiticamente!
Grazie.
Cordiali saluti.
Salve a tutti,
volevo chiedere il vostro aiuto riguardo il seguente esercizio.
Calcolare l'integrale $int_{0}^{1} (sinx^4)/x dx$ con errore inferiore a $10^-2$.
La funzione $sint$ ha il seguente sviluppo in serie di Maclaurin: $sint=sum_{n=0}^{+oo} ((-1)^n)/((2n+1)!)t^(2n+1)$.
Ponendo $t=x^4$ e dividendo per x si ottiene che $(sinx^4)/x=sum_{n=0}^{+oo} ((-1)^n)/((2n+1)!)x^(8n+3)$. A questo punto bisogna vedere se è possibile applicare il teorema del passaggio al limite sotto il segno di integrale. Bisognerà quindi verificare l'uniforme ...
$ oint_C y dx + 2x dy -1/(1+z^2) dz $ lungo la curva $C:\{ (x^2 +y^2 =1) , (z=x+y):}$
Quali passaggi dovrei fare?
Ragazzi volevo chiederdvi se è possibile determinare la soluzione in forma chiusa per un sistema di due ODE complete del secondo ordine del tipo:
\[\left\{ \begin{matrix}
a{{{\ddot{y}}}_{1}}(t)+b{{{\dot{y}}}_{1}}(t)+c{{{\dot{y}}}_{2}}(t)+d{{y}_{1}}(t)+e{{y}_{2}}(t)=-az(t) \\
f{{{\ddot{y}}}_{2}}(t)+g{{{\dot{y}}}_{1}}(t)+h{{{\dot{y}}}_{2}}(t)+i{{y}_{1}}(t)+l{{y}_{2}}(t)=-fz(t) \\
\end{matrix} \right.\]
Dove $a,b,c,d,e,f,g,h,i,l$ sono costanti note così come è nota la funzione ...
allora ho
$\lim x->0 \frac{2-x}{x^2}$
posso raccogliere la x di grado maggiore,vero?
e quindi poi mi resta
$\lim x->0 \frac{2}{x^2} - \frac{1}{x}$
ho qualche dubbio! potreste aiutarmi a risolverlo?
1. Se $(0,1)$ ha la potenza del continuo, è ovvio che anche $[0,1]$ abbia potenza del continuo?
2. L'insieme delle intersezioni con l'asse delle x della funzione $f$ : $y=sin(1/x)$ ha la potenza del continuo? Mi sembra anche questo un risultato abbastanza ovvio, ma forse ..
L'insieme delle intersezioni di $f$ con le ascisse sono i valori per cui si verifica $f(x)=0$. Mi aspetto di avere un'infinità non numerabile di soluzioni, ...
Il mio libro di Analisi enuncia il seguente risultato, senza giustificarlo (probabilmente deve essere evidente):
siano $f,g$ Riemann-integrabili su $[\alpha,\beta]$ e $|f(x)| <= g(x)$, per ogni $x\in[\alpha,\beta]$. Allora:
$|\int_a^b f| <= |\int_a^b (|f|)| <= |\int_a^b g| $
per ogni scelta dei numeri $a,b$ nell'intervallo $[\alpha,\beta]$.
Ho pensato che dato che $g(x) >= |f(x)|$, allora $g$ è una funzione sempre positiva. Ora, per funzioni solo positive in un intervallo ...
Salve a tutti ho bisogno di una mano. Devo sostenere l'esame di analisi (premetto di non aver mai studiato analisi in vita mia) e ho un problemino. Ho bisogno di aiuto con le successioni... praticamente ho un esercizio che dice: "stabilire se la successione è limitata superiormente, inferiormente o è limitata". Ed ho an = n\n+2. La soluzione del libro mi dice che tale successione è limitata. So che per definizione una successione è limitata se esistono due numeri m, M appartenenti a R tali che ...
$1.$ Devo determinare il dominio di una applicazione. Ho $c\in l^{2}$ ed $A$ tale che che $A:(c_{0},c_{1},c_{2},...)\rightarrow (\sqrt{1}c_{1},\sqrt{2}c_{2},\sqrt{3}c_{3},...)$. Il dominio di $A$ è composto dai punti di $l^{2}$ tali che $Ac\in l^2$ e quindi \[\sum_{n=1}^{\infty}|\sqrt{n}c_{n}|^{2}=\sum_{n=1}^{\infty}|\sqrt{n}|^{2}|c_{n}|^{2}=\sum_{n=1}^{\infty}n|c_{n}|^{2}
ciao, ho il segnale periodico $x(t)=sgn(Acos((2pi)/(T_0)*t))$ Il prof in aula ha detto che la potenza di questo segnale è pari ad 1.Io ho provato a svolgere i calcoli e i risultati non coincidono.Ho fatto così:
$1/T_0 int_(T_0) |x(t)|^2 dt = 1/T_0 int_(T_0) A^2cos^2((2pi)/(T_0)*t) dt$......e mi trovo $A^2/2 $ dove sbaglio?