Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

ragazzi scusate la banalità della domanda ma mi stanno venendo troppi dubbi
qualcuno mi aiuta con questa disequazione?
$(x^2-y^2)(1-x^2)>1/4$

Ciao a tutti, sto facendo analisi matematica e mi è sorto un dubbio
ho una successione ricorsiva
a0=1
an+1= $sqrt{2+an}$
ho dimostrato che la successione è crescente, convergente e limitata, ed ho dimostrato anche che la successione è compresa tra 1

Salve, mi chiedevo: cosa vuol dire fare la derivata di entrambi i membri di un'equazione?
Per esempio, prendiamo l'equazione $2x^2+3x=4x$. Facendo la derivata di entrambi i membri dell'equazione, si ottiene l'equazione $4x+3=4$.
Vuol dire semplicemente ottenere a partire dalla prima equazione una seconda equazione? C'è un legame fra le soluzioni della prima equazione e della seconda equazione?
Grazie!

$lim_(x->+1)(2^(1-x)-1)/((1-x)sen(1-x^2))$
Forma interminata 0/0
dato il limite Not : $lim_(x->0)(a^x+1)/x=log a$ , scomponendo il lim lo potrei applicare anche se il mio lim tende a +1
$lim_(x->+1)((2^(1-x)-1)/(1-x))xx1/(sen(1-x^2))$ da cui applicando il Lim Not ottengo
$lim_(x->+1)log2/(sen(1-x^2))$ moltiplico il sen per la parentesi :
$lim_(x->+1)log2/(-senx^2))$ divido e moltipl per x^2
$lim_(x->+1)log2/((-senx^2/x^s)(x^2))$ dove il sen è un limi note e , sostituendo 1 alla x ottengo come risultato -log 2 .
qualcuno può dirmi se è corretto ?? grazie millee

$1.$ Def Sia $A \subseteq \mathbb{R}, x_{0}\in D(A), x_{0}\in\overline{\mathbb{R}}$, e siano $f,g:A\rightarrow \mathbb{R}$. Se esistono $W\ni x_{0}$ ed una costante $M>0$ tali che
$|f(x)|\leq |g(x)| \forall x \in (A \text{\ } \{x_{0}\})\cap W$ scriveremo
\[
f(x)=O(g(x))\text{ per } x\rightarrow x_{0}
\]
Ora se $h(x)=(f(x) \/ g(x))\rightarrow \lambda$ per $x\rightarrow 0$ significa che
$\forall V_{\lambda} \exists W_{x_{0}}\ :f(x)\in V_{\lambda}\forall x \in W_{x_{0}}\text{\ }\{x_{0}\}$
$\forall S(\lambda,\epsilon) \exists T(x_{0},\delta)\ :f(x)\in S(\lambda,\epsilon)\forall x \in T(x_{0},\delta)\text{\ }\{x_{0}\}$
$\forall \epsilon >0 \exists \delta >0 : h(x)\inS(\lambda,\epsilon)$ se ...
$\forall \epsilon >0 \exists \delta >0 : \lambda-\epsilon<h(x)<\lambda+\epsilon$ se...
E quindi fissato un certo $\overline{\epsilon}$ trovo $M>0$ t.c. valga la precedente, ma non il ...
Salve a tutti,
volevo chiedervi una mano per un esercizio svolto dal mio prof che non ho compreso pienamente.
Determinare gli eventuali estremi relativi della funzione
$f(x,y)=root(3)(|(4x^2+y^2-16)/(64-(4x^2+y^2))|)$
nell'intersezione tra il campo di esistenza ed il quadrato di vertici (0,0),(4,0),(0,4),(4,4).
Consideriamo $f(x,y)=phi(g(x,y))$ con $g(x,y)=4x^2+y^2$ e $phi(t)=root(3)(|(t-16)/(64-t)|)$
Si studia innanzitutto la funzione g(x,y) (caso che ho già trattato in un post precedente) e si ottiene che (0,0) e (4,4) sono ...

Ciao a tutti...sto preparando l'esame di matematica...ultimo esame:
data la seguente funzione numerica
y=2x+5
devo calcolare la y e illustrare graficamente...
Avrei bisogno di sapere se i passaggi sono giusti....
Calcolo la y supponendo ad esempio che:
x=3
y=2x+5 --> (2*3)+5 ---> 6+5 ---> 11 (valore di y)
Per ricavare i punti d'intersezione sugli assi X e Y per la rappresentazione grafica devo porre x=0 e y=0 giusto? a questo punto le due espressioni di calcolo per ricavare le due ...
ho la seguente funzione
$y=x^2+2x+5$
mi devo calcolare la sua derivata, allora $x^2=2x$, $5=0$...e la derivata di $2x$ quant'è???

Salve a tutti, vorrei calcolare il seguente limite( $x->\pi/2$, so che non si legge molto bene ergo lo scrivo qui):
$lim_(x->\pi/2) (x*[2+sinx])$
Siccome sto calcolando un limite, non mi interessa il valore che la funzione eventualmente assume in quel punto; infatti nella definizione di limite scrivo $0<|x-x_0|<\delta$
$lim_(x->\pi/2) (sinx)=1^-$ ( si vede dal grafico del seno che in un intorno di $\pi/2$ il seno vale "quasi" 1)
Quindi il $lim_(x->\pi/2) (2+sinx)=3^-$
Applicando $[3^-]$, dal ...

Sia $A(t):\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$. Consideriamo il sistema lineare $\dot{y}=A(t)y+b(t)$.
$1.$ Una combinazione lineare di soluzioni è soluzione, nel senso che se
$\dot{\varphi}(t)=A(t)\varphi(t)+b_{1}(t)$
$\dot{\psi}(t)=A(t)\psi(t)+b_{2}(t)$
$\dot{\varphi}(t)+\dot{\psi}(t)=A(t)\varphi(t)+b_{1}(t)+A(t)\psi(t)+b_{2}(t)$
$[\dot{\varphi}(t)+\dot{\psi}(t)]=A(t)[\varphi(t)+\psi(t)]+[b_{1}(t)+b_{2}(t)]$
$2.$ Considero il sistema omogeneo associato $\dot{z}=A(t)z$. Sul Pagani-Salsa leggo che se $\varphi(t)$ è soluzione del primo sistema e $\psi(t)$ è soluzione del sistema omogeneo allora la loro somma è soluzione del primo sistema. ...

Mi aiutate a trovare i punti stazionari di questa funzione a due variabili : x^(2y)+(x^2)-2y ?
ho calcolato le derivate parziali ma quando le pongo uguali a zero e le metto ha sistema per trovare i punti stazionari nn riesco a risolverlo...

Salve a tutti,
so che di integrali di esponenziali risolti ce ne sono molti qui su matematicamente.it, ma non ho trovato la risoluzione dell'integrale: \( \int_0^{+inf} x*e^{-x}\ \text{d} x \), dove inf sta per infinito. In particolare non capisco perché, integrando per parti, il primo termine [-xe^(-x)] con x = 0 a pedice e x -> + infinito ad apice si annulla..essendo, per x -> infinito, 0*infinito una forma indeterminata, non riesco a capire perché si annulli e rimanga solo l'integrale fra ...

in che modo si puòtrovare la retta perpendicolare al grafico di una funzione f(x,y)?

Salve ragazzi,
sono uno studente di Ing. Meccanica e sto scrivendo una dispensa di Analisi I e II per conto del mio professore.
Mi sono posto come obiettivo di rendere semplice lo studio della materia, che risulta talvolta faticoso sia a causa della troppa astrazione dei libri di testo, sia della loro incompletezza.
A proposito di quest'ultimo aspetto, mi è sorto un forte dubbio scrivendo il capitolo del calcolo integrale (in una variabile):
cos'è quel maledetto $dx$ che compare ...

Ciao,
devo appunto risolvere dei limiti usando la definizione ma non riesco, non capisco come devo procedere.
So che:
1) $\lim_{n \to +\infty}a_n = l$
$AA \epsilon > 0$, $EE N = N(\epsilon)$, $AA n>N$, $|a_n - l| < \epsilon$
2) $\lim_{n \to +\infty}a_n = +\infty$
$AA M > 0$, $EE N = N(M) > 0$, $AA n>N$, $a_n > M$
3) $\lim_{n \to +\infty}a_n = -\infty$
$AA M > 0$, $EE N = N(M) > 0$, $AA n>N$, $a_n < - M$
Ora, se devo dire cosa significa $\lim_{n \to +\infty}a_n = 3$ attraverso la definizione, ...

Ragazzi, ho una brevissima riga di disuguaglianze che davvero non riesco a capire, soprattutto non vedo l' utilizzo della disuguaglianza di Young (il testo la cita).
Riporto testualmente:
$ u_k^p in C_0^1(RR) $
$|u(x)|^p le int_(RR)(|u_k|^(p-1)u_k)$
$ |u_k(x)|^p le int_(RR)|(|u_k|^(p-1)u_k)'|dx = p int |u_k|^(p-1)|u_k'|dx le p* ||u_k||^(p-1)_(L^p)*||u_k'||_(L^p) $
Usando la disuguaglianza di Young
$ ab le 1/(p') * a^(p')+1/p*b^p $
concludiamo dunque che
$ s u p|u_k(x)| le p^(1/p)*||u_k||_(H^(1,p)) $
Potreste delucidarmi su come viene ottenuta la conclusione e dove fa uso di Young, anhce perchè io non vedo alcuna somma..

devo descrivere qualitativamente le soluzioni di
$y'=sin(ty)$
1) f(t,y)=$sin(ty)$ è di classe $C^1(R^2)$ e quindi esistenza e unicità locale sono assicurate
2) f è limitata
3) soluzioni costanti y=k, $sin(tk)=0$ per k=0 (l'unica costante è la soluzione nulla)
4) simmetrie: u(t)=y(-t) ogni soluzione è pari
5) monotonia: $(2kpi)/t <=y<=(2k+1)pi/t$ le soluzioni crescono dnella zona compresa tra gli assi coordinati e i rami di iperbole $y=(2kpi)/t$ e $ y=(2k+1)pi/t$; sulla ...

Qualcuno potrebbe telegraficamente dirmi come mai nel citato teorema
http://it.wikipedia.org/wiki/Teorema_de ... a_dominata
la g "dominante" si presenta senza modulo? g sta in $L^1$ quindi è a valori complessi..
L'ho trovato su quasi tutte le fonti così (saggiamente distinte dato che è difficile trovarne di NON discendenti dal buon vecchio Rudin). Cosa sto non vedendo?
THX guys

devo scrivere lo sviluppo in serie di Laurent di \(\displaystyle f(z)= \frac{1}{z^3}Log(1+iz^2) \) precisando la regione in cui vale e specificando parte regolare e parte singolare, lo sviluppo mi è venuto fuori \(\displaystyle f(z) = \frac{1}{z^3}\sum_{n=1}^\infty(-1)^{n-1}\frac{(iz^2)^n}{n}=\sum_{n=0}^\infty(-1)^n\frac{i^{n+1}z^{2n-1}}{n+1} \), come faccio a stabilire la regione in cui vale? Mi basta solamente impostare \(\displaystyle 1+iz^2\ne0 \), oppure devo anche considerare il caso ...

Salve, volevo sottoporvi questo quesito:
fare l'integrale di una funzione e in seguito il complesso coniugato del risultato è come fare il complesso coniugato della funzione e in seguito l'integrale; posso scambiare l'ordine di questi due operatori?
Non riesco a trovare questa proprietà su nessun libro che possiedo.
Grazie anticipatamente.