Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
nomefor
Salve a tutti. Scusate ma non so scrivere in simboli... (anzi se potete dirmi come si fa ) limite di n che tende a + infinito di ( 5^n - n^5) / (4^n + n^6 ) Si deve riportare ai due limiti notevoli n^b / a^n a^n / n! ma non ci riesco. Grazie
6
28 dic 2012, 10:35

contrattivo93
Salve a tutti, vorrei provare che $ \lim_(x -> +oo ) e^(-x^2) \int_0^x e^(t^2)\ \text{d} t =0 $ So che non è integrabile elementarmente, e difatti non mi interessa calcolarlo, vorrei solo provare che tende a 0. Ho pensato di maggiorare la funzione all'interno dell'integrale ma non ne riesco a trovare una che dopo sia ingrado di dire che converge, qualcuno ha qualche idea su qualche intuizione che potrei utilizzare? Grazie in anticipo!!
3
27 dic 2012, 18:16

Sk_Anonymous
I simboli +,-,* che compaiono in un'equazione differenziale non sono gli stessi che indicano le operazioni di somma, differenza e moltiplicazione, giusto? I simboli +,-,* che compaiono in un'equazione differenziale sono degli operatori che associano a due funzioni un'altra funzione? Grazie!
21
1 nov 2012, 10:21

hannabeth
Ciao a tutti, mi presento, ho 20 anni e sono di Bologna. Come molti di voi, anche io sono sotto esami e scrivo per avere un chiarimento sul programma di analisi I. Risolvendo limiti con gli sviluppi di Taylor, spesso mi capita di fare sostituzioni e di avere delle funzioni complicate all'interno dell'o piccolo. Per esempio: sen(x+2x^2) = x + 2x^2 + o((x+2x^2)^2) è lo sviluppo al II ordine di punto iniziale 0 del seno. La domanda è, come faccio a semplificare la funzione all'interno dell'o ...
2
27 dic 2012, 17:10

Sk_Anonymous
Sto iniziando a studiare per l'esame di Metodi Matematici della Fisica. Ho questo dubbio, e credo di stare per scrivere una castroneria. Correggetemi, vi prego! Sia $H$ uno spazio di Hilbert, sia $x \in H$ e sia $\{ \e_n \}_{n\in N}$ un set di vettori linearmente indipendenti e ortonormali di $H$. Definendo $a_n=(x,e_n)$, dove $(\cdot,\cdot)$ prodotto scalare, se \[\bar x_n = \sum_{i=0}^{n} a_i e_i\] converge a $\bar x=x$ per $n \to infty$, ...
5
26 dic 2012, 14:55

daner1
premetto che non voglio mancare alla vostra regola più sacra, ma io sinceramente non so proprio dove mettere le mani su questi esercizi! 1.12 Esercizio. Piuttosto utile è la seguente diseguaglianza equivalente alla diseguaglianza triangolare: per ogni x, y € R si ha ||x|-|y||
3
26 dic 2012, 23:26

lordb
Ciao ragazzi, al termine di un esercizio di Fisica II mi è richiesto il calcolo di questo integrale indefinito (sono sicuro che sia corretto): $int (-x*cos(theta)-y*sin(theta)+R)/(x^2+y^2+R^2-2x*R*cos(theta)-2y*R*sin(theta))^(3/2)d\theta$ con $x,yinRR$ e $RinRR^+$. Mi sembra opportuno scrivere subito $gamma=x^2+y^2+R^2$,$=>gammainRR^+$, giusto per ridurre visivamente il denominatore: $int (-x*cos(theta)-y*sin(theta)+R)/(gamma-2x*R*cos(theta)-2y*R*sin(theta))^(3/2)d\theta$ Con l'aiuto della trigonometria riscrivo l'integrale così: $int (-x*[(1-tan(theta/2)^2)/(1+tan(theta/2)^2)]-y*[(2tan(theta/2))/(1+tan(theta/2)^2)]+R)/(gamma-2x*R*[(1-tan(theta/2)^2)/(1+tan(theta/2)^2)]-2y*R*[(2tan(theta/2))/(1+tan(theta/2)^2)])^(3/2)d\theta$ Per sostituzione: ...
6
20 dic 2012, 12:22

Riccardo Desimini
Consideriamo la successione di termine generale \[ a_n = \frac{(-1)^n}{n} \] Voglio studiare \[ \lim_{n \rightarrow +\infty} a_n \] So che tale limite fa $ 0 $ (nè dalla destra, nè dalla sinistra). Voglio mostrare questo risultato utilizzando i teoremi sui limiti. Abbiamo \[ \lim_{n \rightarrow +\infty} \frac{(-1)^n}{n} \] Ma la successione di termine generale \( (-1)^n \) è irregolare, dunque non posso applicare il teorema che dice \[ \frac{a_n}{b_n} \longrightarrow \frac{a}{b} ...
4
27 dic 2012, 21:51

CarlCarl
Ciao a tutti !! Avrei dei dubbi su questo esercizio : $ lim_(n -> oo ) (e^(1/n)-cos(n))/n $ Io avevo pensato di risolverlo così : $ (e^(1/n)-cos(n))/n = (1-cos(n))/n + (e^(1/n)-1)/n $ $ = n (1-cos(n))/n^2 + (e^(1/n)-1)/(1/n)*1/n^2 $ e quindi usando i limiti notevoli $ lim_(n -> oo ) (1-cos(n))/n^2 = 1/2 $ e $ lim_(n -> oo ) (e^(1/n)-1)/(1/n) = 1 $ ottengo $ lim_(n -> oo ) n/2+1/n^2 $ che fa infinito mentre il risultato del limite deve essere 0. Dov'è l'errore ? Grazie mille
5
27 dic 2012, 21:58

rettile56
Salve a tutti. Sto studiando gli sviluppi di Taylor e devo dire che mi vengono quasi tutti. Incontro però dei problemi nel caso di funzioni trigonometriche. Lo sviluppo in sè non è nulla di complesso, ma credo di sbagliare l'opiccolo. Ad esempio: $ sen(\root(3)(x)+x) $ Già al primo ordine ho dei problemi. Io riscriverei semplicemente: $ \root(3)(x)+x+o(x) $ al secondo, uguale con l'opiccolo(x²) al terzo: $ root(3)(x)+x- (root(3)(x)+x)^3/6+o(x^3) $ al quarto uguale con l'opiccolo(x^4). Eppure non è così. Da un esempio ...
1
27 dic 2012, 19:57

qwertyuio1
Sia $(f_n)_ {n\in\mathbb{N}}$ una successione di funzioni convesse e derivabili su $\mathbb{R}$ tali che \[f_n(x)\xrightarrow[n\to\infty]{}f(x)\ \forall x\in\mathbb{R}\] Posto $D:=\{x\in\mathbb{R}|f\text{ è derivabile in }x\}$, ho letto che \[f_n'(x)\xrightarrow[n\to\infty]{}f'(x)\ \forall x\in D\] Come si può fare per dimostrarlo?
4
27 dic 2012, 16:37

ntb1
Ciao a tutti, nello svolgere il seguente integrale: $ int 1/(sinx+1) $ ho applicato la sostituzione $ t=tg(x/2) $ e quindi $ sinx=(2t)/(1+t^2) $ e $ dx=2/(1+t^2)dt $ . Arrivato alla fine mi ritrovo come risultato $ -(2)/(t+1)|_(t=tg(x/2)) $ e quindi sostituendo: $ -2/(tg(x/2)+1) $ però il risultato secondo wolfram alpha non è giusto anche se a me sembra di aver seguito un modo lecito di procedere, dove sbaglio? Grazie ps: il risultato di wolfram è $ (2sin(x/2))/(sin(x/2)+cos(x/2)) $
2
27 dic 2012, 16:32

gundamrx91-votailprof
[tex]| \lt x,y \gt| \le \|x\| \cdot \|y\|[/tex] Nella dimostrazione di questa disuguaglianza si parte dal fatto che se uno dei due vettori è zero, allora la disuguaglianza è verificata (e fino a qui mi sembra banale dato che [tex]| x \cdot 0 | = \|x\| \cdot 0=0[/tex] o [tex]|0 \cdot y | = 0 \cdot \|y\|=0[/tex]). Poi prosegue dicendo che sia [tex]\lambda \in \mathbb{R}[/tex] un reale qualsiasi (sottolineato di proposito), allora: [tex]\| x + \lambda y \|^2 \ge 0[/tex] e anche questo mi ...
7
26 dic 2012, 08:40

melli13
Determinare quante soluzioni ha l'equazione: $x=int_0^x e^(-t^2) dt +1$ Io ho derivato ambo i membri, ottenendo: $1=e^(-x^2)$ e quindi ho una doppia soluzione in $x=0$ Però non mi convince il fatto che se faccio una prova, sostiuendo $x=0$ all'equazione, mi esce fuori che $0=1$ e quindi credo ci sia qualche errore nel mio ragionamento. Ma non capisco dove. $f(t)$ è continua su tutto $RR$ quindi lo posso applicare il Secondo teorema del ...
5
27 dic 2012, 16:06

Kashaman
Salve ragazzi, ho il seguente esercizio. Trovare al variare di $\lambda \in RR$ il numero di soluzioni di $x^7(x-6)^7=\lambda$ Ho agito nel seguente modo : Considero l'applicazione $f(x)=x^7(x-6)^7$. Verifico per quali $\lambda \in RR EE x \in RR t.c f(x)=\lambda$. Noto innanzi tutto che sia $x->+\infty$ che per $x->-\infty$ , $f(x) -> +\infty$. (da qua si desume che $f$ ha almeno un minimo). $f(x)=0 <=> x=0 ^^ x=6$ ed è positiva per $x \in ]-\infty, 0[ uu [6,+\infty[$ ed è negativa per $ x \in ]0,6[$. Dallo studio ...
2
27 dic 2012, 15:12

Flamber
$int1/((1-x^2)^2)$ il libro mi cinsiglia di calcolare questo integrale con il metodo di Hermitte. Se é strettamente necessario vedró di impararlo, ma vorrei evitare di aggiungere alla lista anche questo metodo, posso riuscire a calcolarlo in qualche altra maniera?
5
27 dic 2012, 09:59

dennysmathprof
[tex]\displaystyle f: (0,+\infty)-->R, f(x)f{'}(x)f{'}{'}(x)>0, f(1)=1,f(2)=4, f{'}(1)=2,f{'}(2)=4[/tex]$$, dobbiamo dimostrare che $$[tex](\displaystyle (f(x)f(x+1)+8)(f(x)f(2x)+12)\ge 192x^2.\forall x>0 )[/tex] $$ dennysmathprof
9
25 dic 2012, 21:23

kateledger
Scusate mi potreste aiutare con questo integrale superficiale? In realtà il problema è l'integrale nella parte finale ...Non mi torna l'intervallo di integrazione e la seconda parte dell'integrale, eppure la procedura dovrebbe essere corretta \( Σ= \{ \sqrt{2*x*y}=z , 0
7
27 dic 2012, 00:19

snooopy1
Buonasera! Ho qualche problema con la Z trasformata, spero mi possiate dare una mano. C'è questo passaggio che non capisco sul calcolo della Z-u trasformata: Z $1/((n+2)!)$ = $ z^2(e^(1/z)-1-1/z) $ Allora io partirei applicando la definizione di Z-u trasformata: $ 1/((n+2)!) $ = $\sum_{n=0}^\infty\ 1/z^n(n+2)! $ e qui mi blocco... più che altro è questo fattoriale a confondermi. vi ringrazio in anticipo per l'aiuto!
3
26 dic 2012, 22:05

burm87
Ciao a tutti, ho questo limite e non riesco a venirne fuori, qualcuno mi aiuta? $lim x->+oo(sin(sqrt(x+1))-sin(sqrt(x)))$ Il risultato dice che il limite tende a 0, so che probabilmente devono essere utilizzate le formule di prostaferesi. Grazie!
5
26 dic 2012, 12:21