Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Lauke
Ciao ragazzi mi domandavo, solo per pura curiosità, ma è possibile brevettare un algoritmo? Ho cercato in giro per il web, ma ho trovato chi dice si, chi dice no, chi dice si, ma solo fuori italia. Volevo sapere se qui in italia è brevettabile. Parlo di ALGORITMI non software. E se è possibile brevettarli, non si può accedere ad una qualke lista di algoritmi brevettati? Thank you
9
19 ago 2011, 12:33

bestiedda2
ero indeciso se postarlo qua o in algebra, ma comunque... sto studiando geometria differenziale delle varietà e ho alcuni dubbi "algebrici": Definiamo [tex]\mathfrak{F}(M)=\lbrace f:M \rightarrow \mathbb{R} | \mathrm{f \space è \space differenziabile \space su \space M} \rbrace[/tex]. Ora, definendo le seguenti operazioni: [tex]+: (f+g)(p)=f(p)+g(p)[/tex] e [tex]\cdot: (\lambda \cdot f)(p)=\lambda \space f(p), \forall \lambda \in \mathbb{R}[/tex] si può definire una struttura di spazio ...

MONI891
Ciao a tutti. Ho un problema a cavallo fra l'analisi e la probabilità. Siano X e Y variabili aleatorie binomiali X=B(n,p) e Y=B(n,p') dove |p-p'|0), dove questo epsilon sarà in funzione di eta e di n. Come faccio?? Vi prego aiutatemi..è urgente!! Grazie
23
30 ago 2011, 16:29

Gost91
Salve a tutti ragazzi! E' la prima volta che tento di risolvere un esercizio di algebra lineare sicchè perdonatemi se scrivo qualche baggianata (...e sarà molto probabile che succeda! ) Allora, del seguente quesito devo indicare la risposta corretta: Sia $T:RR^3->RR^3$ l'applicazione lineare tale che $T(1,0,0)=(1,1,0),T(0,2,0)=(2,0,2),T(0,0,-1)=(2,1,1)$ Allora: 1)$\lambda=-2$ è autovalore e $T$ è iniettiva. 2)$\lambda=0$ è autovalore e $T$ è iniettiva. 3)$\lambda=-2$ è autovalore ...
6
29 ago 2011, 14:11

Gost91
Salve a tutti! Dovrei risolvere la seguente equazione: $e^((2z+2)/i)=-1+i$ Ecco mi sono mosso: $e^((2z+2)/i)=-1+i=$ $(2z+2)/i=log(-1+i)=$ $2z+2=i(logsqrt(2)+i(3/2pi+2kpi))=$ $z=(ilogsqrt(2))/2-(3/4pi+kpi)-1$ E a questo punto mi blocco. Vorrei esprimere le soluzioni in forma algebrica, cosa che non so fare. Avete qualche suggerimento su come fare?
6
30 ago 2011, 17:23

yoshiphy
Salve a tutti, ho incontrato dei problemi con questo integrale che penso sia abbastanza fattibile però il mio risultato e quello del libro dove ho preso l'esercizio non coincidono . Se potete aiutarmi a capire gli estremi di integrazione vi ringrazio: $ int int e^{x+y} dx dy $ dove la regione d'integrazione è data da S={(x,y)| $ |x|+|y|leq 1 $ }
28
28 ago 2011, 18:11

ant.py
Ciao a tutti il mio problema in questo momento è che non ho proprio idea di come rappresentare graficamente porzioni di piano determinate da disequazioni; mi serve un aiuto concettuale per capirci qualcosa esempio di problema: ora, avevo pensato (assurdamente) che essendo presenti sempre valori assoluti, che quelle espressioni non potessero mai raggiungere un valore negativo; il grafico però assume valori negativi, o no? penso che il mio problema è che non capisco come ...
6
29 ago 2011, 18:50

smemo89
Ciao a tutti. La probabilità "appartiene" alla Statistica Descrittiva, all'Analisi Bivariata o all'Inferenza Statistica? Grazie!!!
13
27 ago 2011, 12:29

parni1
Buongiorno a tutti, Ho un problema "pratico" e non so se è possibile risolverlo: Consideriamo un triangolo generico (scaleno) di lati A, B e C e angoli α, β e γ. Io conosco A, uno dei due angoli adiacenti (α per esempio) e la somma degli altri due lati B+C. E' possibile ricavare qualcos'altro? L'ideale sarebbe arrivare alla lunghezza di uno dei 2 lati incogniti.
3
30 ago 2011, 11:04

ummo89
Sapete dirmi come risolvere le equazioni di numeri complessi ? L'esercizio è il seguente $ z^3 (bar z) =-4i $ Io so che $ z=x+iy $ , $(bar z)=x-iy$ e che $ i^2 = -1$ fatti tutti i calcoli mi viene : $ x^4 - y^4 + 2ix^3y +2ixy^3 +4i=0 $ L'esercizio chiede , risolvere l'equazione . . . quindi cosa devo fare ? Devo separare la parte reale da quella immaginaria,fare il sistema e trovare i valori di x e y ? Se cosi fosse ,faccio : ${ x^4 - y^4=0 $ ${2ix^3 y+2ixy^3+4i=0 $ cosi trovo che x=y e che di ...
2
30 ago 2011, 18:00

IlRosso1
Ehmm..sono ancora qua! quelli che hanno risposto al mio post precedente saranno stufi di sentirmi! cmq..il problema che ho oggi riguarda un limite che è il seguente: $ lim_(x -> sqrt(2)^+ ) ln((x^2-2)/(x^2-1)) $ ed eseguendo il calcolo verrebbe fuori $ [ 0^+/1 ] $ che nella soluzione dà come risultato finale $ -oo $ ..non c'è qualcosa di sbagliato secondo voi?
8
30 ago 2011, 09:54

talitadiodati90
ho svolto più e più volte questo limite di successione $n^4(1-cos(1/n)-2sen(1/(4n^2)))$ tendendo n a infinito gli argomenti del seno e del coseno tendono a 0 quindi applico i limiti notevoli ed ottengo: $n^4([(1-cos(1/n))/(1/n^2)](1/n^2)-2[(sen(1/(4n^2)))/(1/(4n^2))](1/(4n^2)))$ cioè $n^4([1/2](1/n^2)-2[1](1/(4n^2)))$ che è ancora una forma indeterminata del tipo $0*oo$ come vado avanti? fin qui il procedimento è giusto oppure no? PS: devo usare per forza i limiti notevoli.

enr87
qualcuno sa come si dimostra che nella cavità di un conduttore isolato cavo il campo elettrostatico è nullo? mi pare che nei libri ci si giri attorno senza mai arrivare al sodo. volevo sapere se è un fenomeno che si osserva sperimentalmente e si accetta (un po' come la legge di faraday-henry), oppure se c'è una dimostrazione matematica. grazie

Maryse1
Ho preso un esercizio da un esame di analisi: Studiare il grafico di: f(x)= $ e^-x (e^x - 1)^(1/3) $ e discutere, al variare di $ c in(R) $ , il numero delle soluzioni dell’equazione: $ e^-x (e^x - 1)^(1/3) = c$ il grafico della funzione è ok è abbastanza facile, ho un dubbio sul secondo punto che di sicuro è una semplice banalità...non riesco a capire cosa devo ben fare, mi devo calcolare le soluzioni dell'equazione con c? ..
7
30 ago 2011, 18:31

Gost91
Buon giorno ragazzi! Stamani mi sono imbattuto in questo integrale che non riesco a calcolare: $\int(2t^2+1)e^(t^2)dt$ avete qualche utile consiglio da darmi?
15
30 ago 2011, 09:39

Slevin89
Data la funzione: g(x,y)= $\{(xy(x^2 -y^2)/(x^2+y^2)) ,(0):}$ rispettivamente se (x,y)$\ne$(0,0) e la seconda se (x,y)=(0,0); Dire se è differenziabile in (0,0),verificato continuita' e derivate parziali, Come faccio a calcolarmi il limite : $lim_((h,k)->(0,0))(hk(h^2-k^2))/(sqrt(h^2+k^2)(h^2+k^2))$ Vorrei applicare la disuguaglianza di Cauchy-Schwarz,come posso fare? (Potrei risolvere il limite considerando una retta generica k=mh con m$in$$RR$ ? ) Grazie anticipatamente.
4
29 ago 2011, 17:52

mico89
Ciao ho provato centinaia di volte ma non riesco a capire come si fa questo automa, cè qualcuno che sa farlo? ecco la traccia: Costruire un automa finito che riconosca il linguaggio: L = { (01)n1m | n, m ≥ 0 & n+m pari} N.B. la somma di due numeri è pari se gli addendi sono entrambi pari o entrambi dispari.
6
22 ago 2011, 12:06

Darèios89
Ho questa serie: [tex]\sum_{i=0}^{\log_2(n)-1}2^in\log_2(2)^i[/tex] [tex]n\sum_{i=0}^{\log_2(n)-1}2^ii[/tex] Devo arrivare ad ottenere: [tex]n(2^{\log(n)}\log(n)-2*2^{\log(n)}+2)[/tex] Mi serve per un esercizio....ma non riesco a ricondurla a quella forma. So che [tex]2^i[/tex] mediante derivata diventa [tex]2^{\log(n))}-1[/tex] ma come tratto [tex]\sum_{i=0}^{\log_2(n)-1}i[/tex]? Mi serve proprio ricondurla a quella forma, spero possiate aiutarmi. Grazie.
3
29 ago 2011, 19:57

kniv7s
Sto facendo delle prove d'esame, e visto che svariati esercizi ahimè sono senza soluzione, volevo confrontare la mia qui con voi. "Due pianeti, di massa l'una il doppio dell'altra, ruotano attorno al Sole su orbite circolari con uguale velocità v." a) Le due orbite hanno raggio uguale b) Il pianeta di massa doppia si muove su un'orbita di raggio il doppio dell'altra c) Il pianeta di massa doppia si muove su un'orbita di raggio la metà dell'altra La mia risposta è la A. Impiegando la legge di ...

bord89
ho una sfera di raggio r=14.3 cm carica superficialmente con densità $\sigma=\sigma_0sen\thetacos^2\phi$, dove $\sigma_0=4.17(\muC)/(cm^2)$. la sfera ruota intorno all'asse z con velocità angolare $\omega=2000 (rad)/s$, generando così una distribuzione di corrente sulla superficie sferica. determinare il modulo della densità di corrente mediata nel tempo, in mA/mm, in un punto con $\theta= 0.796 rad$ sulla superficie della sfera in oggetto. io so che la densità di corrente J è uguale a $J=\sigma*v=\sigma*\omega*r*sen\theta$. ora per esplicitare ...