Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
infermieraquasi
vorrei fare una tesi sperimentale sulla diagniosi infermieristica ,mi date un idea?..................però nella mia realtà nn fanno diagniosi
1
16 dic 2011, 18:33

dRyW
Stavo seguendo una lezione sulle trasformazioni del piano dove si parlava di parabola ed in particolare ricavare dalla generica $ax^2+bx+c=0$ l'equazione di affinità/dilatazione-translazione $Y=n/m^2(x-p)^2+q$ mettendo in evidenza a nella prima si ottiene $Y=a(x^2+b/ax)+c$ ora, per completare il quadrato in parentesi si dovrebbe sottrarre al tutto il termine $b/(2a)$ elavato al quadrato in modo che il tutto venga $Y=a(x+b/(2a))^2-(b^2+4ac)/(4a)$ ora dopo tutto sto casino mi chiedo: ma ...
11
5 dic 2011, 20:04

Stellinelm
Salve , qualcuno sa risolvere questo problema . se : $(a)/(b - c)+ (b)/(c - a)+(c)/(a - b)= 0$ allora anche : $(a)/(b - c)^2 + (b)/(c - a)^2+ (c)/(a - b)^2= 0$ mi hanno suggerito di usare la disuguaglianza di Cauchy-Schwarz, nota anche come disuguaglianza di Schwarz , affermando che è un caso particolare della disuguaglianza di Hölder . ma i miei risultati sono molto infruttuosi .

gipsy99
Oggi la prof ha dato come compito questo problema, peccato che non ha spiegato come si puo risolvere, potete darmi una mano? I cateti di un triangolo rettangolo differiscono di 8 cm e sono uno i 3/4 dell'altro. Sapendo che l'ipotenusa misura 40 cm, calcola il perimetro e la misura dell'altezza relativa all'ipotenusa. Grazie in anticipo
5
16 dic 2011, 15:38

smaug1
\(\displaystyle \lim \) (\(\displaystyle \frac{e^x -1 - 2x}{1-cosx + x^2} \)) \(\displaystyle x \rightarrow 0 \) A me era venuto in mente di utilizzare al denominatore il limite notevole del coseno, prima di usare taylor, ma si può?, perchè? fino a che grado bisogna sviluppare? Io nel dubbio ho sviluppato fino al secondo ordine e viene: \(\displaystyle \frac{1 + 2x + 2x^2 -1 -2x}{1-1+ \frac{x^2}{2} + o(x^2) + x^2} \) = \(\displaystyle \frac{2x^2 + o(x^2)}{\frac{3x^2}{2} + o(x^2)} \) = ...
7
16 dic 2011, 22:02

bettinaale
Ciao ragazzi..ho un piccolo problema..io e lui siamo stati insieme x due mesi..poi c'erano dei problemi e nn potevamo stare piu insieme..xo i nostri sentimenti nn sn cambiati..qnd passeranno qus problemi c rimetteremo insieme sicuramente anke xk io nn posso stare senza di lui e lui senza di me..e qnd stavamo insieme lui mi ha regalato un pelouche e io un bracialetto..ora lui è in vacanza e parliamo tt i gg e mi ha dtt k mi ha preso 4 regali..io volevo fargli un regalo un po speciale..c'è nl ...
8
27 lug 2011, 10:58

nico borraccia1
4 espressioni con quadrato di trinomio grazie

francycafy93
dopo aver analizzato i vari componimenti di D'annunzio spiega cos'è: il vitalismo panico il superomismo l'estetismo l'antropomorfismo facendo riferimenti al romanzo "il fuoco", all'opera "il piacere", alle liriche: "o falce di luna calante" ; "la sera fiesolana" e "la pioggia nel pineto". Aggiunto 11 ore 36 minuti più tardi: aiutoooooooooooooooo!!!!!
1
16 dic 2011, 09:23

Lucrezia29
Ciao a tutti! Sto studiando i limiti e ho un problema con lo "spezzare una frazione": non l'ho mai sentita come regola matematica...qualcuno me la potrebbe spiegare? Ci sono delle regole precise da seguire? Ad esempio ho questo tipo di limite: $ lim_(x -> +oo ) ((2x+3)/(2x))^(1-x) $ come faccio ad ottenere spezzando la frazione questo qui $ lim_(x -> +oo ) (1+ (3/2)/x)^(1-x) $ E poi ho questo limite: $ lim_(x -> +oo ) ((x+2)/(x+1))^(x) $ come faccio ad ottenere, spezzando la frazione, questo qui $ lim_(x -> +oo ) (1+(1)/(x+1))^(x) $ Sono proprio in panico
2
16 dic 2011, 20:35

gugo82
Siano \(u:[0,T]\to \mathbb{R}\) una fissata funzione nonnegativa decrescente, abbastanza regolare, con \(u(T)=0\) (se si vuole, si può normalizzare \(u\) in qualche modo, ad esempio imponendo \(u(0)=\sup_{[0,T]} u=1\)) ed \(f:[0,T]\to \mathbb{R}\) una funzione decrescente con \(f(0)>0\). Posto: \[ \Phi (t):= \int_0^t f(\tau)\ u(\tau)\ \text{d} \tau \] è possibile determinare qualche condizione su \(f\) necessaria affinché la \(\Phi\) non si annulli in \(]0,T[\), cioè affinché si abbia \(\Phi ...
1
16 dic 2011, 03:35

DevelopExpert
Salve potreste gentilmente dirmi se ho svolto il seguente esercizio in maniera corretta? Esercizio Un Motoscafo si muove a [tex]30m/s[/tex] e si avvicina ad una boa che si trova a [tex]100m[/tex] di distanza. Il pilota rallenta con un accelerazione costante di [tex]-3.50m/s^2[/tex] diminuendo la spinta sull'acceleratore. A) Quanto impiega la barca a raggiungere la boa? B) Qual'è la velocità della barca quando raggiunge la ...

mikeleom
$((x^2+3)/(1+x)-2ln(1+x))/(x^2+3)^2$ come si studia il segno di questa funzione? io farei così partendo da $((x^2+3)/(1+x)$ faccio $x!=-1$ $x^2+3>0$ sempre positiva come il denominatore, mentre passando al logaritmo $-2ln(1+x)>0$ $x<-1$
1
16 dic 2011, 18:31

jellybean22
Buona sera a tutti, volevo sapere se è corretto il modo in cui ho risolto il seguente limite: $lim_(x->0)(e^x-cosx)/x$ Aggiungo e sottraggo al numeratore $1$ $lim_(x->0)(e^x-1+1-cosx)/x$ $lim_(x->0)(x((e^x-1)/x+(1-cosx)/x))/x=1$ E' lecito aggiungere e togliere al numeratore una stessa quantità?
5
16 dic 2011, 18:48

Gloria99
Aiutoooo!!!! (75133) Miglior risposta
devo fare x dmn 1 lettera aperta a giuseppe mazzini ke posso scrivere???? aiutooo Aggiunto 3 minuti più tardi: Daii x favoree....un pikkolo spunto x come posso iniziare o x kosa posso skrivere
1
16 dic 2011, 20:29

•studente•
Non riesco a risolvere questo problema :( ………… nel rettangolo ABCD un lato supera di 5 cm i 4/3 dell' altro e il perimetro è lungo 52 cm. Calcola l'area del rettangolo……… Grazie ciao :hi
2
16 dic 2011, 17:32

Sandruz1
Allora ho: $ lim_(x -> 0) (cos(e^x - e^(-x))-1)/ (arctan(x^2))$ Ho moltiplicato e diviso per $x^2$ ottenendo. $ (cos(e^x - e^(-x))-1)/(x^2))$ $(x^2)/(arctg (x^2)) $ che per i limiti notevoli e $1$ Mi ritrovo un'altra forma indeterminata $0/0$ ho provato con Hopital ma mi incasino, so che il risultato è $-2$ quindi suppongo che debba utilizzare il limite notevole $(1-cos(x))/x^2$ ma non so come farlo....
8
16 dic 2011, 19:45

smaug1
\(\displaystyle \lim \) \(\displaystyle (\frac{1}{x} - cos\frac{1}{x}) \) \(\displaystyle \frac{ln(1+6x^2) - 3x sen2x}{x^3} \) \(\displaystyle x \rightarrow 0\) Anche di questo non ho la soluzione ma l'ho svolto così: Innanzitutto ho fatto questa considerazione (della quale non sono sicuro), il termine coseno è trascurabile in quanto limitato, così quell'\(\displaystyle \frac{1}{x} \) moltiplica il denominatore facendolo diventare \(\displaystyle x^4 \). Procedendo ho: \(\displaystyle ...
1
16 dic 2011, 20:10

bibikarol1
ho due domande. la prima: è possibile che l'integrale da -1 a 0 di -x al quadrato +x +2 sia -7/6?? la seconda: è possibile che la funzione 2 che moltiplica (x fratto x al quadrato +4) abbia, nell'intervallo [0;3], un massimo in (2;1/2)?? nello stesso intervallo non ci sono minimi, giusto?? vi prego aiutatemi!!!
3
16 dic 2011, 19:32

Ivanoe1
Ciao Ragazzi. Nel metodo dei moltiplicatori di lagrange per il calcolo dei massimi e minimi vincolati di funzioni a più variabili a seconda delle fonti ho trovato a volte la lagrangiana calcolata come segue; per una funzione a due variabili con un solo vincolo g(x,y): f=lambda L(x,y,f)=f(x,y) + f*g(x,y) in altre fonti invece calcolata L(x,y,f)=f(x,y) - f*g(x,y) Non capisco perchè c'è questa differenza visto che porta a dei risultati differenti. Grazie.
5
16 dic 2011, 14:21

Dario93
Salve. Mi spieghereste come si arriva alla definizione di limite a secondo dei diversi casi? Non vorrei imparare la formuletta a memoria senza capire quello che sto scrivendo.. Ad esempio : [math]\lim_{x \to \x_0}f(x)=l[/math] come faccio ad ottenere questo : |f(x)-l|< ɛ so che non mi sono spiegato al meglio ma spero che mi abbiate capito. Grazie in anticipo. Aggiunto 51 secondi più tardi: ps: x tendente ad x con 0 non so come scriverlo
3
14 dic 2011, 18:35