Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
otta96
Penso che il baricentro di un insieme convesso debba appartenere all'insieme, ma come si dimostra? Preso un insieme convesso $A\subseteqRR^n$, questo dovrebbe essere misurabile perchè $A\setminus\text{int}(A)\subseteq\partialA$ e immagino che $\partialA$ abbia misura nulla anche se non saprei esattamente perchè. Forse ci si può basare sul fatto che credo sia vero che $\partialA$ si possa scrivere come unione di un numero finito di grafici di funzioni convesse (eventualmente ruotati) di cui ...
4
5 gen 2021, 16:32

fabiofrutti94
Salve, consideriamo l'insieme dei numeri complessi del tipo: \[ X=\{ z \in \mathbb{C} \;| \; z= \frac{a-i}{a^2+1} \;\; t.c. \;\; a \in \mathbb{R}\} \] vorrei rappresentare l'insieme nel piano cartesiano. Ho visto che tale insieme rappresenta i punti della circonferenza di centro $(0,-1/2)$ e raggio $1/2$, perché rappresentano tutti i punti del tipo $(\frac{a}{a^2+1},\frac{-1}{a^2+1})$ che soddisfano la relazione $(y+1/2)^2+x^2=1/4$. La mia domanda è: se uno non riesce ad osservare che soddisfano ...


Pasquale 90
Buongiorno, ho un problema sulla dimostrazione del presente teorema: In tal caso Definizione: Dato uno spazio vettoriale $V$ di dimensione $n$, una successione di applicazione $psi_1, psi_2, ... , psi_n :V to K$ si dice un sistema di coordinate se l'applicazione $F:V to K^n, \qquad v to (psi_1(v),...,psi_n(n))^T$ è un isomorfismo lineare. Teorema: Sia $V$ spazio vettoriale di dimensione finita $n$. Per ogni base $v_1, ... , v_n$ di $V$ esiste un unico sistema di ...

mario.carta995
hey qualcuno è disponibile a fare una versione di latino? grazie Hippolytus filius erat Thesei et Hippolytae; magna (cerca magnus, agg.; si riferisce a peritia) cum peritia equitabat, in silvis feras agitabat sed feminas nuptiasque spernebat. Venus, (Venere, nominativo) amoris (dell’amore) dea, irata (cerca iratus, agg.; si riferisce a Venus) ob Hippolyti neglegentiam infeste iurat: “Animum tuum superbum (agg., si riferisce a animum) puniam, Hippolyte!” Postea dea concupiscentiae flammam ...
1
21 gen 2021, 16:30

___Elis.
URGENTE (297109) Miglior risposta
Mi potete tradurre: Interdum etiam homo non stultus adulatori credit. In montis cacumine avis nidificat. Interdum homo fraudis et sceleris peritus est.
1
21 gen 2021, 16:36

damon123
Buonasera a tutti avrei dei dubbi sui seguenti esercizi: 1)Siano A=R\Q e B=(0,1), A∩B ammette massimo? il mio ragionamento è stato: in A si trovano solo i numeri irrazionali, il massimo dovrà essere il primo valore irrazionale che trovo "scendendo" da 1, il numero irrazionale che trovo più vicino a 1 sarà un valore contenuto in A in quanto irrazionale, contenuto in B (perché sto supponendo che esistano numeri irrazionale tra 0 e 1). esso dovrà essere un valore che appartiene all'intersezione ...
6
21 gen 2021, 00:24

mario.carta995
Versione (297091) Miglior risposta
ho bisogno di una traduzione di latino grazie: Hippolytus filius erat Thesei et Hippolytae; magna (cerca magnus, agg.; si riferisce a peritia) cum peritia equitabat, in silvis feras agitabat sed feminas nuptiasque spernebat. Venus, (Venere, nominativo) amoris (dell’amore) dea, irata (cerca iratus, agg.; si riferisce a Venus) ob Hippolyti neglegentiam infeste iurat: “Animum tuum superbum (agg., si riferisce a animum) puniam, Hippolyte!” Postea dea concupiscentiae flammam inculcat Phaedrae, ...
1
21 gen 2021, 12:04

HOMOERECTUS381
Frase latino Miglior risposta
nemini a nobis filiis dicenda sunt
1
21 gen 2021, 15:04

sabgarg
Salve a tutti, sto avendo dei problemi nel risolvere questo esercizio sulla convergenza di processi stocastici. Spero qualcuno possa illuminarmi. Sia \( X_t = 3+a_t \ \ con \ \ a_t \sim (0,\sigma^2) i.i.d. \) Dato \( Y_n = \frac{1}{\sqrt{n+2}}\sum_{t=1}^{n} {X_t} \) A cosa converge (in distribuzione) Y quando n tende ad infinito? Io ho cominciato a scrivere il processo come \( Y_n = \frac{1}{\sqrt{n+2}}\sum_{t=1}^{n} {(3+a_t)} \) e \( Y_n = \frac{1}{\sqrt{n+2}}(3n+\sum_{t=1}^{n} ...
2
21 gen 2021, 04:14

dieghito
ciao a tutti qualcuno gentilmente mi potrebbe tradurre questa frase e dirmi se ci sn delle particolari costruzioni....grazie in anticipo munitis castris . milites quieti se dederunt Arves,impunente hieme,migrant :ita infidus amicus,commutata fortuna,amicum deserant
2
30 ago 2008, 09:58

FF71
Buongiorno vi vorrei sottoporre il seguente integrale improprio. $ int_(0)^(pi/2) ((tan(x))^alpha sin(x) ln(sinx)) / (1-(cos(x))^alpha ) dx $ Va studiata la convergenza dell'integrale al variare del parametro alpha. Ho suddiviso innanzitutto l'integrale in due addendi, il primo sarebbe l'integrale tra 0 e un certo parametro d, reale tra 0 e pi/2 e il secondo sarebbe l'integrale tra d e pi/2. Dopodiché il primo integrale mi porta a dire che la convergenza, sfruttando gli sviluppi, si ha per alpha >0, mentre per il secondo non riesco a ...
1
21 gen 2021, 12:25

Triangoloisoscele
Ciao a tutti, non ho capito molto come si risolvono le equazioni con i radicali. Qualcuno saprebbe spiegarmi, ad esempio con la risoluzione di questa equazione, come si risolvono, per favore? Grazie in anticipo per tutte le risposte!

Sfuzzone
Ciao a tutti, devo risolvere questa equazione con il metodo dell'angolo aggiunto. L'ho già risolta in 1000 altri modi (formule parametriche, metodo grafico ecc.) ma la prof. vuole quel metodo. L'equazione è: $sinx+(sqrt(2)-1)cosx-1=0$ devo usare la formula $asinx+bcosx=rsin(x+α)$ con $r=sqrt(a^2+b^2)$ e $tanα=b/a$ Trovo tangente di alfa ---> $tanα=(sqrt(2)-1)$ e alfa ---> $α=π/8+kπ$ Quello che non riesco a calcolare è r che mi esce $r=sqrt(4-2sqrt(2))$. A quel punto scrivo $sin(x+π/8)=1/sqrt(4-2sqrt(2))$ e ...
2
21 gen 2021, 00:25

Studente Anonimo
Non capisco come mai un funzionale che definisce sia ben definito in una parte della dimostrazione del teorema. Enunciato: Sia \(V\) uno spazio vettoriale reale, e \( p : V \to \mathbb{R} \) un funzionale sotto-lineare. Supponiamo il dominio di \(f\), \( D(f) \subset V \) sia un sotto-spazio vettoriale, e \( f: D(f) \to \mathbb{R} \) sia un funzionale lineare. Se \( f(x) \leq p (x) \) per ogni \( x \in D(f) \) allora esiste un funzionale lineare \( F: V \to \mathbb{R} \) tale che \[ F ...
8
Studente Anonimo
20 gen 2021, 21:01

Elfadli
Ciao a tutti qualcuno di voi mi può dire i richiami teorici della misura della lunghezza grazie mille
1
20 gen 2021, 22:54

damon123
Buongiorno a tutti, potete dirmi se il ragionamento che ho fatto su questo esercizio è corretto? l'esercizio diceva: "Siano $f(x) in C^2(RR)$ e $g(x) = |x| f(x)$. Se $lim_(x->0) f(x)/x= 0$, allora esiste $g''(0)$?" ho messo vero e come giustificazione avevo pensato: grazie alle ipotesi so che in $x_0=0$ la $f(x)$ si comporta come $x$, il che vuol dire che $g(x)$ in $x_0=0$ si comporta come $|x|x$, che è derivabile due ...
7
20 gen 2021, 13:18

Elfadli
Ciao a tutti qualcuno di voi mi dire i richiami teorici della misura della lunghezza grazie mille
1
20 gen 2021, 22:54


axpgn
Quanto fa questo prodotto infinito? [size=150]$3^(1/3)*9^(1/9)*27^(1/27)*...*(3^n)^(1/(3^n))*...$[/size] Cordialmente, Alex
6
19 gen 2021, 22:50