Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Calcolare $lim_{x to +infty}x(a+sin(x))$ per $a in RR$.
Sappiamo che $-1<=sin(x)<=1$ $AAx in RR$ allora si ha che $-1<=a+sin(x)<=1$
e $a-1<=a+sin(x)<=a+1$ $AAx in RR$.
Quindi abbiamo $x(a-1+sin(x))<=x(a+sin(x))<=x(a+1+sin(x))$ $AAx in (0,+infty)$
Posto $f_1(x)=x(a-1+sin(x))$ e $f_2(x)=x(a+1+sin(x))$ allora
$AAU(+infty), x in U => f_1(x)<=f(x)<=f_2(x)$
Inoltre $lim_{x to +infty}x=+infty => x=lim_{x to +infty}f_1 (x)=lim_{x to +infty}f_2 (x)=+infty$
da cui $lim_{x to +infty} f(x)=limlim_{x to +infty} f_1(x)=lim_{x to +infty} f_2(x)=+infty$
E' corretto?

Data la forma differenziale:
$omega=y/(2(sqrt(xy)+xy))dx+x/(2(sqrt(xy)+xy))dy$
calcolare:
$int_gamma omega$
essendo $gamma$ il sostegno della curva di equazione $(2+t,1/(1+t^2))$ con $t in [0,1]$
Calcolando i punti iniziali e finali sostituendo i valori 0 e 1 alla parametrizzazione della curva, trovo i valori iniziali e finali della curva $(2,1)$ e $(3,1/2)$.
Inoltre siccome la forma differenziale è chiusa e nel semipiano $ ] 0;+oo [$ x $ ]0,+oo[ $ la forma differenziale è ...

Giorno, seguendo l'esempio di alcuni esercizi già svolti provavo a fare questo: Sia $ B_1 $ una base ortonormale e sia $ B_2 = ( [+2,+1,+1]_(B_1) , [+1,-1,0]_(B_1), [+1,+1,+1]_(B_1) ) $ un'altra base ( non ortonormale ). Determinare la matrice del prodotto scalare rispetto a $ B_2 $ . Io seguendo passo per passo l'esercizio ho fatto così:
Sia $ B'= ( u_1,u_2,u_3) $ la base ortonormale che devo ottenere da $ B_2 $.
Costruisco una base $ B''= (w_1, w_2,w_3) $ di vettori a due a due ortogonali.
$ w_1=v_1=(2,1,1) $
...

Salve a tutti io sono un ragazzo che frequenta il primo anno di matematica a Milano e tra pochi giorni ho un'esame di algebra lineare.. e non ho ben capito alcune cose posso chiedere a voi un aiutino?
Questo è un'esercizio "guida" che vi fa capire un po' le mie difficoltà:
Nello spazio vettoriale V dei polinomi di grado minore o uguale a 3 a coefficienti in R, si considerino il sottospazio X generato dai polinomi:
p1 = x^3 + x^2 - 6x + 4
p2 = x^2 - 2x + 1
p3 = x^3 -3x^2 + 2x
e il sottospazio
Y ...

Salve a tutti!!!
qualcuno sa dirmi dove posso trovare la dimostrazione sull'integrabilità termine a termine della serie di FOurier?
grazie milleee

Salve a tutti,
non riesco a capire l'ultimo passaggio di questa breve dimostrazione, in cui bisogna dimostrare che il determinante di una matrice ortogonale è 1 o -1.
$I = C^tC$ se la matrice C è ortogonale,
$1 = det(I) = det(C^tC) = det(C^t) det(C) = det (C)^2 $
perchè $det(C^t) det(C) = det (C)^2$ ? non sarebbe così solo se la matrice è simmetrica?
Grazie in anticipo
Valentina

Ciao ragazzi, cerco aiuto per il seguente teorema.
Si consideri una funzione f : R --> R tale che
f(x) = 0 se x è irrazionale
f(x) = 1/b se x = a/b è razionale (dove a/b è l’unico modo per scrivere il numero razionale x come quoziente di numeri interi a e b primi fra loro).
Si dimostri che f è continua in ogni punto irrazionale mentre è discontinua in ogni punto razionale.
Grazie anticipate!

Salve amici, è la prima volta che scrivo un post...
Sono alle prese con G.B.Folland " A cours in abstract Harmonic Analysis"....
Ho un piccolo problema legato alla sigma algebra dei boreliani... ovvero:
dato [tex]E[/tex] boreliano, allora [tex]xE=\{ xe \quad t.c\quad e \epsilon E \}[/tex] e [tex]E^{-1}=\{ e^{-1} \quad t.c\quad e \epsilon E \}[/tex] sono ancora boreliani.
Grazie Anticipatamente

Ciao a tutti!
Sono in preparazione del test di Analisi 2 e ho difficoltà con degli esercizi presi direttamente dai temi esame degli anni precedenti pubblicati dal nostro docente. Passo direttamente all'esposizione:
Sia \(\displaystyle Q =\{(x, y)\in\mathbb{R}^2: y\geqslant0 , x^2+y^2 \leqslant 2 , |x|\leqslant y^2\} \)
Allora
\( \int\int_Q((6y+3x+\cos(6y)\arctan(8x^5)+6y\sinh(3x))dxdy \) =
A 3arccos(6) B 7
C sen(6)+3cosh(6) D Nessuna delle altre affermazioni `e ...

Ciao a tutti Ho un grosso problema nel derivare questa funzione y=arcotg sen x
Derivando utilizzando la regola per la derivazione di funzioni composte ottengo (senxcosx)/(x^2+1) contrariamente a (cosx)/(1+sen^2x) che dovrei ottenere.. Potreste per favore esplicitare i passaggi utilizzati per ottenere il risultato?

ciao ragazzi
sbaglio o $\lim_(x to - \infty) log x$ è indertrminato?
Su http://www.wolframalpha.com/ viene riportato $\lim_(x to - \infty) log x=infty$...come mai?

$int int int_T (ysqrt(z)/(x^2+y^2)) dxdydz$
$T={(x,y,z)inR^3:x^2+y^2+z^2<=1,z>=x^2+y^2}$
Come agisco qua? Uso le cilindriche?

Salve a tutti, ho un problema abbastanza grave mercoledì ho l'esame di analisi 3 e non riesco a risolvere questo problema riguardante l'equazione del calore:
RISOLVERE IL PROBLEMA
$\{((delU)/(delt)-4(del^2U)/(delx^2)=0text{ }0<x<pitext{ } t>0),(U(x;0)= 5+2sin^2xtext{ }0<=x<=pi),((delU)/(delx)(0;t)=(delU)/(delx)(pi;t)=0text{ }t>0):}$
E DIMOSTRARE CHE LA FUNZIONE U(x,t) tende ad una costante uniformemente in [0:$pi$] per $t \to \infty$ SPECIFICANDO IL VALORE DI TALE COSTANTE
Si tratta di un problema di Cauchy-Neumann omogeneo con condizioni al contorno omogenee; l'equazione di per se si risolve abbastanza ...

Salve a tutti, sono bloccato nello studio del seguente problema alle derivate parziali, cui traccia recita:
Sia \( \alpha \ge 0 \) e \( u(x, y) \) soluzione dell'equazione
\[ x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \alpha\, u \]
Sapendo che \( u(x,y) = 1 \) sulla circonferenza \( \{ (x,y) \in \mathbb{R}^2 : x^2+y^2=1 \} \),determinare i valori di
\( u(x, y) \).
Allora si procede con lo studio di \( \alpha=0 \), nel cui caso si ha un sistema omogeneo.
Si trovano ...
Ho bisogo di aiuto
Miglior risposta
come si fanno i mononomi on la X? :cry :cry
$\lim_{x \to \0}(1-sqrt(cos(x)))/(x^2)$
$=\lim_{x \to \0}(1-sqrt(cos(x)))/(x^2)*[(1+sqrt(cos(x)))/(1+sqrt(cos(x)))]=$ ...

$int int int_T (x^2/(1+z^2))dxdydz$
$T={(xyz)inR^3:x^2+y^2<=z^2+1,|z|<=1}$
non riesco a trovare gli estremi di integrazione... ho molte difficoltà.

8a^5 b^5 * (+1/4 a^5c)-5/6 a^4 bc * (+2a^6 b^4)+ 3/8 abc * (-2a^9 b^4)

Ho queta matrice che ho ridtto in forma di Jordan
${(((2,0,0,0),(0,2,0,0),(0,0,2,0),(0,0,0,0)))}$
Il polinomio minimo a me torna
(t-2)(t-2)(t-2)(t-0) puo andare?

ciao a tutti dovrei risolvere questo integrale ma non riesco proprio a capirlo qualcuno mi potrebbe illuminare? grazie mille
\(\displaystyle \int ( x^7* cos(x)) \)